6 datasets found
  1. Z

    Sentence/Table Pair Data from Wikipedia for Pre-training with...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huan Sun (2021). Sentence/Table Pair Data from Wikipedia for Pre-training with Distant-Supervision [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5612315
    Explore at:
    Dataset updated
    Oct 29, 2021
    Dataset provided by
    Huan Sun
    Alyssa Lees
    You Wu
    Xiang Deng
    Yu Su
    Cong Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the dataset used for pre-training in "ReasonBERT: Pre-trained to Reason with Distant Supervision", EMNLP'21.

    There are two files:

    sentence_pairs_for_pretrain_no_tokenization.tar.gz -> Contain only sentences as evidence, Text-only

    table_pairs_for_pretrain_no_tokenization.tar.gz -> At least one piece of evidence is a table, Hybrid

    The data is chunked into multiple tar files for easy loading. We use WebDataset, a PyTorch Dataset (IterableDataset) implementation providing efficient sequential/streaming data access.

    For pre-training code, or if you have any questions, please check our GitHub repo https://github.com/sunlab-osu/ReasonBERT

    Below is a sample code snippet to load the data

    import webdataset as wds

    path to the uncompressed files, should be a directory with a set of tar files

    url = './sentence_multi_pairs_for_pretrain_no_tokenization/{000000...000763}.tar' dataset = ( wds.Dataset(url) .shuffle(1000) # cache 1000 samples and shuffle .decode() .to_tuple("json") .batched(20) # group every 20 examples into a batch )

    Please see the documentation for WebDataset for more details about how to use it as dataloader for Pytorch

    You can also iterate through all examples and dump them with your preferred data format

    Below we show how the data is organized with two examples.

    Text-only

    {'s1_text': 'Sils is a municipality in the comarca of Selva, in Catalonia, Spain.', # query sentence 's1_all_links': { 'Sils,_Girona': [[0, 4]], 'municipality': [[10, 22]], 'Comarques_of_Catalonia': [[30, 37]], 'Selva': [[41, 46]], 'Catalonia': [[51, 60]] }, # list of entities and their mentions in the sentence (start, end location) 'pairs': [ # other sentences that share common entity pair with the query, group by shared entity pairs { 'pair': ['Comarques_of_Catalonia', 'Selva'], # the common entity pair 's1_pair_locs': [[[30, 37]], [[41, 46]]], # mention of the entity pair in the query 's2s': [ # list of other sentences that contain the common entity pair, or evidence { 'md5': '2777e32bddd6ec414f0bc7a0b7fea331', 'text': 'Selva is a coastal comarque (county) in Catalonia, Spain, located between the mountain range known as the Serralada Transversal or Puigsacalm and the Costa Brava (part of the Mediterranean coast). Unusually, it is divided between the provinces of Girona and Barcelona, with Fogars de la Selva being part of Barcelona province and all other municipalities falling inside Girona province. Also unusually, its capital, Santa Coloma de Farners, is no longer among its larger municipalities, with the coastal towns of Blanes and Lloret de Mar having far surpassed it in size.', 's_loc': [0, 27], # in addition to the sentence containing the common entity pair, we also keep its surrounding context. 's_loc' is the start/end location of the actual evidence sentence 'pair_locs': [ # mentions of the entity pair in the evidence [[19, 27]], # mentions of entity 1 [[0, 5], [288, 293]] # mentions of entity 2 ], 'all_links': { 'Selva': [[0, 5], [288, 293]], 'Comarques_of_Catalonia': [[19, 27]], 'Catalonia': [[40, 49]] } } ,...] # there are multiple evidence sentences }, ,...] # there are multiple entity pairs in the query }

    Hybrid

    {'s1_text': 'The 2006 Major League Baseball All-Star Game was the 77th playing of the midseason exhibition baseball game between the all-stars of the American League (AL) and National League (NL), the two leagues comprising Major League Baseball.', 's1_all_links': {...}, # same as text-only 'sentence_pairs': [{'pair': ..., 's1_pair_locs': ..., 's2s': [...]}], # same as text-only 'table_pairs': [ 'tid': 'Major_League_Baseball-1', 'text':[ ['World Series Records', 'World Series Records', ...], ['Team', 'Number of Series won', ...], ['St. Louis Cardinals (NL)', '11', ...], ...] # table content, list of rows 'index':[ [[0, 0], [0, 1], ...], [[1, 0], [1, 1], ...], ...] # index of each cell [row_id, col_id]. we keep only a table snippet, but the index here is from the original table. 'value_ranks':[ [0, 0, ...], [0, 0, ...], [0, 10, ...], ...] # if the cell contain numeric value/date, this is its rank ordered from small to large, follow TAPAS 'value_inv_ranks': [], # inverse rank 'all_links':{ 'St._Louis_Cardinals': { '2': [ [[2, 0], [0, 19]], # [[row_id, col_id], [start, end]] ] # list of mentions in the second row, the key is row_id }, 'CARDINAL:11': {'2': [[[2, 1], [0, 2]]], '8': [[[8, 3], [0, 2]]]}, } 'name': '', # table name, if exists 'pairs': { 'pair': ['American_League', 'National_League'], 's1_pair_locs': [[[137, 152]], [[162, 177]]], # mention in the query 'table_pair_locs': { '17': [ # mention of entity pair in row 17 [ [[17, 0], [3, 18]], [[17, 1], [3, 18]], [[17, 2], [3, 18]], [[17, 3], [3, 18]] ], # mention of the first entity [ [[17, 0], [21, 36]], [[17, 1], [21, 36]], ] # mention of the second entity ] } } ] }

  2. Z

    3DO Dataset | On the Generalization of WiFi-based Person-centric Sensing in...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Strohmayer, Julian (2024). 3DO Dataset | On the Generalization of WiFi-based Person-centric Sensing in Through-Wall Scenarios [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10925350
    Explore at:
    Dataset updated
    Dec 5, 2024
    Dataset provided by
    Strohmayer, Julian
    Kampel, Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    On the Generalization of WiFi-based Person-centric Sensing in Through-Wall Scenarios

    This repository contains the 3DO dataset proposed in [1].

    PyTroch Dataloader

    A minimal PyTorch dataloader for the 3DO dataset is provided at: https://github.com/StrohmayerJ/3DO

    Dataset Description

    The 3DO dataset comprises 42 five-minute recordings (~1.25M WiFi packets) of three human activities performed by a single person, captured in a WiFi through-wall sensing scenario over three consecutive days. Each WiFi packet is annotated with a 3D trajectory label and a class label for the activities: no person/background (0), walking (1), sitting (2), and lying (3). (Note: The labels returned in our dataloader example are walking (0), sitting (1), and lying (2), because background sequences are not used.)

    The directories 3DO/d1/, 3DO/d2/, and 3DO/d3/ contain the sequences from days 1, 2, and 3, respectively. Furthermore, each sequence directory (e.g., 3DO/d1/w1/) contains a csiposreg.csv file storing the raw WiFi packet time series and a csiposreg_complex.npy cache file, which stores the complex Channel State Information (CSI) of the WiFi packet time series. (If missing, csiposreg_complex.npy is automatically generated by the provided dataloader.)

    Dataset Structure:

    /3DO

    ├── d1 <-- day 1 subdirectory

      └── w1 <-- sequence subdirectory
    
         └── csiposreg.csv <-- raw WiFi packet time series
    
         └── csiposreg_complex.npy <-- CSI time series cache
    

    ├── d2 <-- day 2 subdirectory

    ├── d3 <-- day 3 subdirectory

    In [1], we use the following training, validation, and test split:

    Subset Day Sequences

    Train 1 w1, w2, w3, s1, s2, s3, l1, l2, l3

    Val 1 w4, s4, l4

    Test 1 w5 , s5, l5

    Test 2 w1, w2, w3, w4, w5, s1, s2, s3, s4, s5, l1, l2, l3, l4, l5

    Test 3 w1, w2, w4, w5, s1, s2, s3, s4, s5, l1, l2, l4

    w = walking, s = sitting and l= lying

    Note: On each day, we additionally recorded three ten-minute background sequences (b1, b2, b3), which are provided as well.

    Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to our paper [1].

    [1] Strohmayer, J., Kampel, M. (2025). On the Generalization of WiFi-Based Person-Centric Sensing in Through-Wall Scenarios. In: Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15315. Springer, Cham. https://doi.org/10.1007/978-3-031-78354-8_13

    BibTeX citation:

    @inproceedings{strohmayerOn2025, author="Strohmayer, Julian and Kampel, Martin", title="On the Generalization of WiFi-Based Person-Centric Sensing in Through-Wall Scenarios", booktitle="Pattern Recognition", year="2025", publisher="Springer Nature Switzerland", address="Cham", pages="194--211", isbn="978-3-031-78354-8" }

  3. e

    SteelBlastQC Dataset - Dataset - B2FIND

    • b2find.eudat.eu
    Updated May 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SteelBlastQC Dataset - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/5a71c7a7-4d29-540e-b069-999a1c48f810
    Explore at:
    Dataset updated
    May 4, 2025
    Description

    The SteelBlastQC dataset consists of 1654 RGB images (512×512 pixels) of steel surfaces that are either shot-blasted or still need shot-blasting to achieve the required texture, forming a binary classification task. The dataset includes 888 “good” (ready for paint) images and 766 “not-good” (needs shot-blasting) images. As declared by the collaborating manufacturer, the ideally treated surface is clean and uniformly coarse with an average roughness level of SA 2.5. The “not-good” class presents several types of defects to the surface, located by industrial shot-blasting experts. These include: fresh welding lines and cuts, abrasion, corrosion, and discoloration. The presented dataset can be used for training computer vision models for automated metal surface quality control, addressing the lack of publicly available datasets containing images of shot-blasted steel. For convenience and reproducibility, the data were split into train and test (80/20 ratio). The source code, including the data loader and example data usage experiments, is at https://github.com/ERNIS-LAB/SteelBlastQC.

  4. [Dataset] Towards Robotic Mapping of a Honeybee Comb

    • data.europa.eu
    • zenodo.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo, [Dataset] Towards Robotic Mapping of a Honeybee Comb [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-15042164?locale=bg
    Explore at:
    unknown(4855)Available download formats
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    "Towards Robotic Mapping of a Honeybee Comb" Dataset This dataset supports the analyses and experiments of the paper: J. Janota et al., "Towards Robotic Mapping of a Honeybee Comb," 2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), Delft, Netherlands, 2024, doi: 10.1109/MARSS61851.2024.10612712. Link to Paper | Link to Code Repository Cell Detection The celldet_2023 dataset contains a total of 260 images of the honeycomb (at resolution 67 µm per pixel), with masks from the ViT-H Segment Anything Model (SAM) and annotations for these masks. The structure of the dataset is following:celldet_2023├── {image_name}.png├── ...├── masksH (folder with masks for each image)├────{image_name}.json├────...├── annotations├────annotated_masksH (folder with annotations for training images)├──────{image_name in training part}.csv├──────...├────annotated_masksH_val (folder with annotations for validation images)├──────{image_name in validation part}.csv}├──────...├────annotated_masksH_test (folder with annotations for test images)├──────{image_name in test part}.csv}├──────... Masks For each image there is a .json file that contains all the masks produced by the SAM for the particular image, the masks are in COCO Run-Length Encoding (RLE) format. Annotations The annotation files are split into folders based on whether they were used for training, validation or testing. For each image (and thus also for each .json file with masks), there is a .csv file with two columns: Column id Description 0 order id of the mask in the corresponding .json file 1 mask label: 1 if fully visible cell, 2 if partially occluded cell, 0 otherwise Loading the Dataset For an example of loading the data, see the data loader in the paper repository: python cell_datasetV2.py --img_dir --mask_dir

  5. Z

    Wallhack1.8k Dataset | Data Augmentation Techniques for Cross-Domain WiFi...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kampel, Martin (2025). Wallhack1.8k Dataset | Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8188998
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset provided by
    Strohmayer, Julian
    Kampel, Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the Wallhack1.8k dataset for WiFi-based long-range activity recognition in Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)/Through-Wall scenarios, as proposed in [1,2], as well as the CAD models (of 3D-printable parts) of the WiFi systems proposed in [2].

    PyTroch Dataloader

    A minimal PyTorch dataloader for the Wallhack1.8k dataset is provided at: https://github.com/StrohmayerJ/wallhack1.8k

    Dataset Description

    The Wallhack1.8k dataset comprises 1,806 CSI amplitude spectrograms (and raw WiFi packet time series) corresponding to three activity classes: "no presence," "walking," and "walking + arm-waving." WiFi packets were transmitted at a frequency of 100 Hz, and each spectrogram captures a temporal context of approximately 4 seconds (400 WiFi packets).

    To assess cross-scenario and cross-system generalization, WiFi packet sequences were collected in LoS and through-wall (NLoS) scenarios, utilizing two different WiFi systems (BQ: biquad antenna and PIFA: printed inverted-F antenna). The dataset is structured accordingly:

    LOS/BQ/ <- WiFi packets collected in the LoS scenario using the BQ system

    LOS/PIFA/ <- WiFi packets collected in the LoS scenario using the PIFA system

    NLOS/BQ/ <- WiFi packets collected in the NLoS scenario using the BQ system

    NLOS/PIFA/ <- WiFi packets collected in the NLoS scenario using the PIFA system

    These directories contain the raw WiFi packet time series (see Table 1). Each row represents a single WiFi packet with the complex CSI vector H being stored in the "data" field and the class label being stored in the "class" field. H is of the form [I, R, I, R, ..., I, R], where two consecutive entries represent imaginary and real parts of complex numbers (the Channel Frequency Responses of subcarriers). Taking the absolute value of H (e.g., via numpy.abs(H)) yields the subcarrier amplitudes A.

    To extract the 52 L-LTF subcarriers used in [1], the following indices of A are to be selected:

    52 L-LTF subcarriers

    csi_valid_subcarrier_index = [] csi_valid_subcarrier_index += [i for i in range(6, 32)] csi_valid_subcarrier_index += [i for i in range(33, 59)]

    Additional 56 HT-LTF subcarriers can be selected via:

    56 HT-LTF subcarriers

    csi_valid_subcarrier_index += [i for i in range(66, 94)]
    csi_valid_subcarrier_index += [i for i in range(95, 123)]

    For more details on subcarrier selection, see ESP-IDF (Section Wi-Fi Channel State Information) and esp-csi.

    Extracted amplitude spectrograms with the corresponding label files of the train/validation/test split: "trainLabels.csv," "validationLabels.csv," and "testLabels.csv," can be found in the spectrograms/ directory.

    The columns in the label files correspond to the following: [Spectrogram index, Class label, Room label]

    Spectrogram index: [0, ..., n]

    Class label: [0,1,2], where 0 = "no presence", 1 = "walking", and 2 = "walking + arm-waving."

    Room label: [0,1,2,3,4,5], where labels 1-5 correspond to the room number in the NLoS scenario (see Fig. 3 in [1]). The label 0 corresponds to no room and is used for the "no presence" class.

    Dataset Overview:

    Table 1: Raw WiFi packet sequences.

    Scenario System "no presence" / label 0 "walking" / label 1 "walking + arm-waving" / label 2 Total

    LoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    LoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    NLoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    NLoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    4 20 20 44

    Table 2: Sample/Spectrogram distribution across activity classes in Wallhack1.8k.

    Scenario System

    "no presence" / label 0

    "walking" / label 1

    "walking + arm-waving" / label 2 Total

    LoS BQ 149 154 155

    LoS PIFA 149 160 152

    NLoS BQ 148 150 152

    NLoS PIFA 143 147 147

    589 611 606 1,806

    Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to one of our papers [1,2].

    [1] Strohmayer, Julian, and Martin Kampel. (2024). “Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition”, In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 42-56). Cham: Springer Nature Switzerland, doi: https://doi.org/10.1007/978-3-031-63211-2_4.

    [2] Strohmayer, Julian, and Martin Kampel., “Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition,” 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2024, pp. 3594-3599, doi: https://doi.org/10.1109/ICIP51287.2024.10647666.

    BibTeX citations:

    @inproceedings{strohmayer2024data, title={Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition}, author={Strohmayer, Julian and Kampel, Martin}, booktitle={IFIP International Conference on Artificial Intelligence Applications and Innovations}, pages={42--56}, year={2024}, organization={Springer}}@INPROCEEDINGS{10647666, author={Strohmayer, Julian and Kampel, Martin}, booktitle={2024 IEEE International Conference on Image Processing (ICIP)}, title={Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition}, year={2024}, volume={}, number={}, pages={3594-3599}, keywords={Visualization;Accuracy;System performance;Directional antennas;Directive antennas;Reflector antennas;Sensors;Human Activity Recognition;WiFi;Channel State Information;Through-Wall Sensing;ESP32}, doi={10.1109/ICIP51287.2024.10647666}}

  6. COMP6v2 Release

    • zenodo.org
    application/gzip, pdf +1
    Updated Jul 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kate Huddleston; Roman Zubatyuk; Justin Smith; Adrian Roitberg; Olexandr Isayev; Ignacio Pickering; Christian Devereux; Kipton Barros; Kate Huddleston; Roman Zubatyuk; Justin Smith; Adrian Roitberg; Olexandr Isayev; Ignacio Pickering; Christian Devereux; Kipton Barros (2024). COMP6v2 Release [Dataset]. http://doi.org/10.5281/zenodo.10126157
    Explore at:
    pdf, application/gzip, text/x-pythonAvailable download formats
    Dataset updated
    Jul 10, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Kate Huddleston; Roman Zubatyuk; Justin Smith; Adrian Roitberg; Olexandr Isayev; Ignacio Pickering; Christian Devereux; Kipton Barros; Kate Huddleston; Roman Zubatyuk; Justin Smith; Adrian Roitberg; Olexandr Isayev; Ignacio Pickering; Christian Devereux; Kipton Barros
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 14, 2023
    Description

    COmprehensive Machine-learning Potential (COMP6) Benchmark Suite version 2.0

    The COMP6v2 data is an extension of the COMP6 benchmark found in the following repository: https://github.com/isayev/COMP6

    COMP6v2 is a data set of density functional properties for molecules containing H, C, N, O, S, F, and Cl.

    It is available at the following levels of theory:

    • wB97X/631Gd (data used to train model in the ANI-2x paper)
    • wB97MD3BJ/def2TZVPP
    • wB97MV/def2TZVPP
    • B973c/def2mTZVP

    You will notice that COMP6v1 is split into subsets:

    • ANI-MD
    • DrugBank
    • GDB07to09
    • GDB10to13
    • Tripeptides
    • s66x8

    As we are releasing multiple levels of theory here, each h5 file is a combination of all subsets.

    The sample data loader script provides an example of how to access the contents of the data sets using h5py.

    View the supplementary information for more information on the formatting and contents of the data sets.

    Details on the generation of this data can be found in the ANI-2x paper.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Huan Sun (2021). Sentence/Table Pair Data from Wikipedia for Pre-training with Distant-Supervision [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5612315

Sentence/Table Pair Data from Wikipedia for Pre-training with Distant-Supervision

Explore at:
Dataset updated
Oct 29, 2021
Dataset provided by
Huan Sun
Alyssa Lees
You Wu
Xiang Deng
Yu Su
Cong Yu
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This is the dataset used for pre-training in "ReasonBERT: Pre-trained to Reason with Distant Supervision", EMNLP'21.

There are two files:

sentence_pairs_for_pretrain_no_tokenization.tar.gz -> Contain only sentences as evidence, Text-only

table_pairs_for_pretrain_no_tokenization.tar.gz -> At least one piece of evidence is a table, Hybrid

The data is chunked into multiple tar files for easy loading. We use WebDataset, a PyTorch Dataset (IterableDataset) implementation providing efficient sequential/streaming data access.

For pre-training code, or if you have any questions, please check our GitHub repo https://github.com/sunlab-osu/ReasonBERT

Below is a sample code snippet to load the data

import webdataset as wds

path to the uncompressed files, should be a directory with a set of tar files

url = './sentence_multi_pairs_for_pretrain_no_tokenization/{000000...000763}.tar' dataset = ( wds.Dataset(url) .shuffle(1000) # cache 1000 samples and shuffle .decode() .to_tuple("json") .batched(20) # group every 20 examples into a batch )

Please see the documentation for WebDataset for more details about how to use it as dataloader for Pytorch

You can also iterate through all examples and dump them with your preferred data format

Below we show how the data is organized with two examples.

Text-only

{'s1_text': 'Sils is a municipality in the comarca of Selva, in Catalonia, Spain.', # query sentence 's1_all_links': { 'Sils,_Girona': [[0, 4]], 'municipality': [[10, 22]], 'Comarques_of_Catalonia': [[30, 37]], 'Selva': [[41, 46]], 'Catalonia': [[51, 60]] }, # list of entities and their mentions in the sentence (start, end location) 'pairs': [ # other sentences that share common entity pair with the query, group by shared entity pairs { 'pair': ['Comarques_of_Catalonia', 'Selva'], # the common entity pair 's1_pair_locs': [[[30, 37]], [[41, 46]]], # mention of the entity pair in the query 's2s': [ # list of other sentences that contain the common entity pair, or evidence { 'md5': '2777e32bddd6ec414f0bc7a0b7fea331', 'text': 'Selva is a coastal comarque (county) in Catalonia, Spain, located between the mountain range known as the Serralada Transversal or Puigsacalm and the Costa Brava (part of the Mediterranean coast). Unusually, it is divided between the provinces of Girona and Barcelona, with Fogars de la Selva being part of Barcelona province and all other municipalities falling inside Girona province. Also unusually, its capital, Santa Coloma de Farners, is no longer among its larger municipalities, with the coastal towns of Blanes and Lloret de Mar having far surpassed it in size.', 's_loc': [0, 27], # in addition to the sentence containing the common entity pair, we also keep its surrounding context. 's_loc' is the start/end location of the actual evidence sentence 'pair_locs': [ # mentions of the entity pair in the evidence [[19, 27]], # mentions of entity 1 [[0, 5], [288, 293]] # mentions of entity 2 ], 'all_links': { 'Selva': [[0, 5], [288, 293]], 'Comarques_of_Catalonia': [[19, 27]], 'Catalonia': [[40, 49]] } } ,...] # there are multiple evidence sentences }, ,...] # there are multiple entity pairs in the query }

Hybrid

{'s1_text': 'The 2006 Major League Baseball All-Star Game was the 77th playing of the midseason exhibition baseball game between the all-stars of the American League (AL) and National League (NL), the two leagues comprising Major League Baseball.', 's1_all_links': {...}, # same as text-only 'sentence_pairs': [{'pair': ..., 's1_pair_locs': ..., 's2s': [...]}], # same as text-only 'table_pairs': [ 'tid': 'Major_League_Baseball-1', 'text':[ ['World Series Records', 'World Series Records', ...], ['Team', 'Number of Series won', ...], ['St. Louis Cardinals (NL)', '11', ...], ...] # table content, list of rows 'index':[ [[0, 0], [0, 1], ...], [[1, 0], [1, 1], ...], ...] # index of each cell [row_id, col_id]. we keep only a table snippet, but the index here is from the original table. 'value_ranks':[ [0, 0, ...], [0, 0, ...], [0, 10, ...], ...] # if the cell contain numeric value/date, this is its rank ordered from small to large, follow TAPAS 'value_inv_ranks': [], # inverse rank 'all_links':{ 'St._Louis_Cardinals': { '2': [ [[2, 0], [0, 19]], # [[row_id, col_id], [start, end]] ] # list of mentions in the second row, the key is row_id }, 'CARDINAL:11': {'2': [[[2, 1], [0, 2]]], '8': [[[8, 3], [0, 2]]]}, } 'name': '', # table name, if exists 'pairs': { 'pair': ['American_League', 'National_League'], 's1_pair_locs': [[[137, 152]], [[162, 177]]], # mention in the query 'table_pair_locs': { '17': [ # mention of entity pair in row 17 [ [[17, 0], [3, 18]], [[17, 1], [3, 18]], [[17, 2], [3, 18]], [[17, 3], [3, 18]] ], # mention of the first entity [ [[17, 0], [21, 36]], [[17, 1], [21, 36]], ] # mention of the second entity ] } } ] }

Search
Clear search
Close search
Google apps
Main menu