100+ datasets found
  1. American Community Survey: 1-Year Estimates: Data Profiles 1-Year

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). American Community Survey: 1-Year Estimates: Data Profiles 1-Year [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/american-community-survey-1-year-estimates-data-profiles-1-year-a28e5
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) is a uswide survey designed to provide communities a fresh look at how they are changing. The ACS replaced the decennial census long form in 2010 and thereafter by collecting long form type information throughout the decade rather than only once every 10 years. Questionnaires are mailed to a sample of addresses to obtain information about households -- that is, about each person and the housing unit itself. The American Community Survey produces demographic, social, housing and economic estimates in the form of 1 and 5-year estimates based on population thresholds. The strength of the ACS is in estimating population and housing characteristics. The data profiles provide key estimates for each of the topic areas covered by the ACS for the us, all 50 states, the District of Columbia, Puerto Rico, every congressional district, every metropolitan area, and all counties and places with populations of 65,000 or more. Although the ACS produces population, demographic and housing unit estimates,it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the us, states, counties, cities and towns, and estimates of housing units for states and counties. For 2010 and other decennial census years, the Decennial Census provides the official counts of population and housing units.

  2. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/adecfea6-fcd7-4c41-8165-165c4490a9da/metadata/FGDC-STD-001-1998.html
    Explore at:
    kml(5), csv(5), xls(5), json(5), geojson(5), zip(5), gml(5), shp(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2018
    Area covered
    West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172, New Mexico
    Description

    A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  3. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/487f0819-6838-48f0-bd45-378c0859ed61/metadata/FGDC-STD-001-1998.html
    Explore at:
    zip(5), xls(5), kml(5), csv(5), json(5), shp(5), gml(5), geojson(5)Available download formats
    Dataset updated
    Mar 19, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2017
    Area covered
    New Mexico, West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172
    Description

    A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of the race and/or ethnicity of populations in New Mexico, along with citizenship status and nativity. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  4. Decennial Census: Summary File 3

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Decennial Census: Summary File 3 [Dataset]. https://catalog.data.gov/dataset/decennial-census-summary-file-3
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Decennial Census Summary File 3 (SF 3) Description Census 2000 Summary File 3 (SF3) Summary File 3 presents in-depth population and housing data collected on a sample basis from the Census 2000 long form questionnaire, as well as the topics from the short form 100-percent data (age, race, sex, Hispanic or Latino origin, tenure [whether a housing unit is owner- or renter-occupied], and vacancy status). Summary File 3 consists of 813 detailed tables of Census 2000 social, economic and housing characteristics compiled from a sample of approximately 19 million housing units (about 1 in 6 households) that received the Census 2000 long-form questionnaire. Fifty-one tables are repeated for nine major race and Hispanic or Latino groups: White alone; Black or African American alone; American Indian and Alaska Native alone; Asian alone; Native Hawaiian and Other Pacific Islander alone; Some other race alone; Two or more races; Hispanic or Latino; and White alone, not Hispanic or Latino. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see http://www.census.gov/prod/cen2000/doc/sf3.pdf. See Chapter 8 for computation of margins of error.

  5. American Community Survey: 3-Year Estimates: Data Profiles 3-Year

    • s.cnmilf.com
    • datasets.ai
    • +1more
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). American Community Survey: 3-Year Estimates: Data Profiles 3-Year [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/american-community-survey-3-year-estimates-data-profiles-3-year
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) is a nationwide survey designed to provide communities a fresh look at how they are changing. The ACS replaced the decennial census long form in 2010 and thereafter by collecting long form type information throughout the decade rather than only once every 10 years. Questionnaires are mailed to a sample of addresses to obtain information about households -- that is, about each person and the housing unit itself. The American Community Survey produces demographic, social, housing and economic estimates in the form of 1-year, 3-year and 5-year estimates based on population thresholds. The strength of the ACS is in estimating population and housing characteristics. The 3-year data provide key estimates for each of the topic areas covered by the ACS for the nation, all 50 states, the District of Columbia, Puerto Rico, every congressional district, every metropolitan area, and all counties and places with populations of 20,000 or more. Although the ACS produces population, demographic and housing unit estimates,it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns, and estimates of housing units for states and counties. For 2010 and other decennial census years, the Decennial Census provides the official counts of population and housing units.

  6. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/92f102fa-5d6c-41b6-8cf9-132f78a30e02/metadata/FGDC-STD-001-1998.html
    Explore at:
    csv(5), zip(5), json(5), gml(5), geojson(5), xls(5), shp(5), kml(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2017
    Area covered
    New Mexico, West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172
    Description

    A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey population data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of total population, male and female, and both broad and narrowly-defined age groups. In addition to the standard selection of age-group breakdowns (by male or female), the dataset provides supplemental calculated fields which combine several attributes into one (for example, the total population of persons under 18, or the number of females over 65 years of age). The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  7. m

    Maryland American Community Survey - ACS Census Tracts

    • data.imap.maryland.gov
    • dev-maryland.opendata.arcgis.com
    • +3more
    Updated Feb 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2016). Maryland American Community Survey - ACS Census Tracts [Dataset]. https://data.imap.maryland.gov/datasets/maryland-american-community-survey-acs-census-tracts
    Explore at:
    Dataset updated
    Feb 9, 2016
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    The American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social and economic data. The ACS replaces the decennial census long form in 2010 and every year thereafter. The annual ACS sample is smaller than that of previous long form surveys resulting in a larger sampling error. Coefficients of Variation (CVs), which are statistical measures that show the relative amount of sampling error associated with an estimate, are presented here as a measure of reliability and usability of the data. The unit of geography used for the 2010 - 2014 data is the census tract - a small statistical area within a county, which is delineated every 10 years prior to the decennial census.Last Updated: UnknownThis is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Feature Service Link:https://mdgeodata.md.gov/imap/rest/services/Demographics/MD_AmericanCommunitySurvey/FeatureServer/0

  8. D

    2020 Census Response Rates

    • detroitdata.org
    • datadrivendetroit-dcdev.hub.arcgis.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Driven Detroit (2020). 2020 Census Response Rates [Dataset]. https://detroitdata.org/dataset/2020-census-response-rates
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Aug 20, 2020
    Dataset provided by
    Data Driven Detroit
    Description
    Census Response Rate Information: In order to help communities target their Census outreach activities, this map provides overall and internet response rates by tract for the state of Michigan. In Detroit, we included neighborhood boundaries and community development organization service areas. The map also includes the Census Invitation type, allowing communities to see how initial outreach was conducted and in what language. The 2020 Response Rate data will be updated daily

    Census Form Strategy information: This map contains initial invitation strategies for the 2020 Census by tract for the state of Michigan. Some households will receive an invitation to complete their census form online (or by phone), while other households will receive a paper census questionnaire along with an invitation to respond online. All households that have not completed their census form by mid-April will receive a paper questionnaire. Some households will receive their invitation in English, while others will receive their in English and Spanish. This map has color coded census tracts depending on if they received an initial paper or online invitation, and if their invitation will be in English or English and Spanish.
  9. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/f3c34051-50e6-45ca-9902-43b704400672/metadata/FGDC-STD-001-1998.html
    Explore at:
    xls(5), csv(5), zip(5), json(5), shp(5), kml(5), geojson(5), gml(5)Available download formats
    Dataset updated
    Mar 19, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2017
    Area covered
    New Mexico, West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172
    Description

    A broad and generalized selection of 2013-2017 US Census Bureau 2017 5-year American Community Survey housing data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of housing prices, years of construction, rental information, and occupancy versus vacancy. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  10. 2024 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates...

    • data.census.gov
    • test.data.census.gov
    Updated Oct 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2023). 2024 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/cedsci/table?q=female
    Explore at:
    Dataset updated
    Oct 25, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Age and Sex.Table ID.ACSST1Y2024.S0101.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and t...

  11. Census of Population and Housing, 2010 [United States]: Summary File 2 With...

    • icpsr.umich.edu
    • search.datacite.org
    Updated Jul 18, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2013). Census of Population and Housing, 2010 [United States]: Summary File 2 With National Update [Dataset]. http://doi.org/10.3886/ICPSR34755.v1
    Explore at:
    Dataset updated
    Jul 18, 2013
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/34755/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34755/terms

    Time period covered
    2010
    Area covered
    United States
    Description

    This data collection contains summary statistics on population and housing subjects derived from the responses to the 2010 Census questionnaire. Population items include sex, age, average household size, household type, and relationship to householder such as nonrelative or child. Housing items include tenure (whether a housing unit is owner-occupied or renter-occupied), age of householder, and household size for occupied housing units. Selected aggregates and medians also are provided. The summary statistics are presented in 71 tables, which are tabulated for multiple levels of observation (called "summary levels" in the Census Bureau's nomenclature), including, but not limited to, regions, divisions, states, metropolitan/micropolitan areas, counties, county subdivisions, places, ZIP Code Tabulation Areas (ZCTAs), school districts, census tracts, American Indian and Alaska Native areas, tribal subdivisions, and Hawaiian home lands. There are 10 population tables shown down to the county level and 47 population tables and 14 housing tables shown down to the census tract level. Every table cell is represented by a separate variable in the data. Each table is iterated for up to 330 population groups, which are called "characteristic iterations" in the Census Bureau's nomenclature: the total population, 74 race categories, 114 American Indian and Alaska Native categories, 47 Asian categories, 43 Native Hawaiian and Other Pacific Islander categories, and 51 Hispanic/not Hispanic groups. Moreover, the tables for some large summary areas (e.g., regions, divisions, and states) are iterated for portions of geographic areas ("geographic components" in the Census Bureau's nomenclature) such as metropolitan/micropolitan statistical areas and the principal cities of metropolitan statistical areas. The collection has a separate set of files for every state, the District of Columbia, Puerto Rico, and the National File. Each file set has 11 data files per characteristic iteration, a data file with geographic variables called the "geographic header file," and a documentation file called the "packing list" with information about the files in the file set. Altogether, the 53 file sets have 110,416 data files and 53 packing list files. Each file set is compressed in a separate ZIP archive (Datasets 1-56, 72, and 99). Another ZIP archive (Dataset 100) contains a Microsoft Access database shell and additional documentation files besides the codebook. The National File (Dataset 99) constitutes the National Update for Summary File 2. The National Update added summary levels for the United States as a whole, regions, divisions, and geographic areas that cross state lines such as Core Based Statistical Areas.

  12. Demographics: Population, Race, Gender Data County

    • kaggle.com
    zip
    Updated Jan 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Demographics: Population, Race, Gender Data County [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/county-level-demographic-population-race-gender
    Explore at:
    zip(93210 bytes)Available download formats
    Dataset updated
    Jan 14, 2025
    Authors
    Ahmed Mohamed
    Description

    """

    County-Level Demographic: Population, Race, Gender

    Overview

    This dataset provides a detailed breakdown of demographic information for counties across the United States, derived from the U.S. Census Bureau's 2023 American Community Survey (ACS). The data includes population counts by gender, race, and ethnicity, alongside unique identifiers for each county using State and County FIPS codes.

    Dataset Features

    The dataset includes the following columns: - County: Name of the county. - State: Name of the state the county belongs to. - State FIPS Code: Federal Information Processing Standard (FIPS) code for the state. - County FIPS Code: FIPS code for the county. - FIPS: Combined State and County FIPS codes, a unique identifier for each county. - Total Population: Total population in the county. - Male Population: Number of males in the county. - Female Population: Number of females in the county. - Total Race Responses: Total race-related responses recorded in the survey. - White Alone: Number of individuals identifying as White alone. - Black or African American Alone: Number of individuals identifying as Black or African American alone. - Hispanic or Latino: Number of individuals identifying as Hispanic or Latino.

    Processing Methodology

    1. Source:
    2. County-Level Aggregation:
      • Each county is uniquely identified using State FIPS Code and County FIPS Code.
      • These codes were concatenated to form the unified FIPS column.
    3. Data Cleaning:
      • All numeric columns were converted to appropriate data types.
      • County and state names were extracted from the raw NAME field for clarity.

    Why Use This Dataset?

    This dataset is highly versatile and suitable for: - Demographic Analysis: - Analyze population distribution by gender, race, and ethnicity. - Geographic Studies: - Use FIPS codes to map counties geographically. - Data Visualizations: - Create visual insights into demographic trends across counties.

    File Format

    • The dataset is available as a CSV file with 3,000+ rows (one for each county).

    Licensing

    • Source: Data is sourced from the U.S. Census Bureau's 2023 American Community Survey (ACS).
    • License: This dataset is in the public domain and provided under the U.S. Census Bureau’s terms of use. Attribution to the Census Bureau is appreciated.

    Acknowledgments

    Special thanks to the U.S. Census Bureau for making this data publicly available and to the Kaggle community for fostering a collaborative space for data analysis and exploration. """

  13. 2024 American Community Survey: DP04 | Selected Housing Characteristics (ACS...

    • data.census.gov
    Updated Apr 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2024 American Community Survey: DP04 | Selected Housing Characteristics (ACS 1-Year Estimates Data Profiles) [Dataset]. https://data.census.gov/cedsci/table?q=median%20home%20value%20&
    Explore at:
    Dataset updated
    Apr 21, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2024
    Description

    Key Table Information.Table Title.Selected Housing Characteristics.Table ID.ACSDP1Y2024.DP04.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Data Profiles.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of ...

  14. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    1999 - 2000
    Area covered
    Zimbabwe, Malawi, Zambia, Lesotho, Africa, South Africa, Namibia, Botswana
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  15. T

    Vital Signs: Commute Time (by Place of Residence) – by county (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Jan 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Commute Time (by Place of Residence) – by county (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Commute-Time-by-Place-of-Residence-by-/5bqp-dsj6
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jan 4, 2023
    Description

    VITAL SIGNS INDICATOR
    Commute Time (T3)

    FULL MEASURE NAME
    Commute time by residential location

    LAST UPDATED
    January 2023

    DESCRIPTION
    Commute time refers to the average number of minutes a commuter spends traveling to work on a typical day. The dataset includes metropolitan area, county, city, and census tract tables by place of residence.

    DATA SOURCE
    U.S. Census Bureau: Decennial Census (1980-2000) - via MTC/ABAG Bay Area Census - http://www.bayareacensus.ca.gov/transportation.htm

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    2006-2021
    Form C08136
    Form C08536
    Form B08301
    Form B08301
    Form B08301

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    For the decennial Census datasets, breakdown of commute times was unavailable by mode; only overall data could be provided on a historical basis.

    For the American Community Survey (ACS) datasets, 1-year rolling average data was used for all metros, region and county geographic levels, while 5-year rolling average data was used for cities and tracts. This is due to the fact that more localized data is not included in the 1-year dataset across all Bay Area cities. Similarly, modal data is not available for every Bay Area city or census tract, even when the 5-year data is used for those localized geographies.

    Regional commute times were calculated by summing aggregate county travel times and dividing by the relevant population; similarly, modal commute times were calculated using aggregate times and dividing by the number of communities choosing that mode for the given geography.

    Census tract data is not available for tracts with insufficient numbers of residents. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area in addition to the primary metropolitan statistical areas (MSAs) for the nine other major metropolitan areas.

  16. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center, American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/307ef70d-5c51-47f5-bda8-dcb1cac21b00/metadata/FGDC-STD-001-1998.html
    Explore at:
    csv(5), geojson(5), zip(5), json(5), gml(5), xls(5), kml(5), shp(5)Available download formats
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2018
    Area covered
    New Mexico, West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172
    Description

    A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey housing data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of housing prices, years of construction, rental information, and occupancy versus vacancy. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  17. t

    2020 Census Geography - Datasets - Capitol Data Portal

    • data.capitol.texas.gov
    Updated Aug 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2020 Census Geography - Datasets - Capitol Data Portal [Dataset]. https://data.capitol.texas.gov/dataset/2020-census-geography
    Explore at:
    Dataset updated
    Aug 17, 2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The United States Census Bureau publishes geographic units used for tabulation of the 2020 Census population data in the 2020 TIGER/Line Shapefile. The geographic units, which remain constant throughout the decade, include counties, census tracts, block groups, and blocks. Fields have been added so data formatted or published by the council can be joined to the shapefile for analysis. Each Shapefile (.shp) is in a compressed file (.zip) format. Blocks.zip - Census Blocks BlockGroups.zip - Block Groups Tracts.zip - Census Tracts Counties.zip - Counties Cities.zip - Census Places (Cities) CDPs.zip - Census Designated Places Each 'Pop' file contains the 2020 Census population for the corresponding geographic level. BlocksPop.zip - Census Blocks 2020 Census Population BlockGroupPop.zip - Census Block Groups 2020 Census Population TractsPop.zip - Census Tracts 2020 Census Population CountiesPop.zip - Counties 2020 Census Population

  18. T

    Vital Signs: Displacement Risk - by tract

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Displacement Risk - by tract [Dataset]. https://data.bayareametro.gov/w/r2zc-q9se/default?cur=nui8TmiV5x-
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset authored and provided by
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Displacement Risk (EQ3)

    FULL MEASURE NAME Share of lower-income households living in tracts at risk of displacement

    LAST UPDATED December 2018

    DESCRIPTION Displacement risk refers to the share of lower-income households living in neighborhoods that have been losing lower-income residents over time, thus earning the designation “at risk”. While “at risk” households may not necessarily be displaced in the short-term or long-term, neighborhoods identified as being “at risk” signify pressure as reflected by the decline in lower-income households (who are presumed to relocate to other more affordable communities). The dataset includes metropolitan area, regional, county and census tract tables.

    DATA SOURCE U.S. Census Bureau: Decennial Census 1980-1990 Form STF3 https://nhgis.org

    U.S. Census Bureau: Decennial Census 2000 Form SF3a https://nhgis.org

    U.S. Census Bureau: Decennial Census 1980-2010 Longitudinal Tract Database http://www.s4.brown.edu/us2010/index.htm

    U.S. Census Bureau: American Community Survey 2010-2015 Form S1901 5-year rolling average http://factfinder2.census.gov

    U.S. Census Bureau: American Community Survey 2010-2017 Form B19013 5-year rolling average http://factfinder2.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Aligning with the approach used for Plan Bay Area 2040, displacement risk is calculated by comparing the analysis year with the most recent year prior to identify census tracts that are losing lower-income households. Historical data is pulled from U.S. Census datasets and aligned with today’s census tract boundaries using crosswalk tables provided by LTDB. Tract data, as well as regional income data, are calculated using 5-year rolling averages for consistency – given that tract data is only available on a 5-year basis. Using household tables by income level, the number of households in each tract falling below the median are summed, which involves summing all brackets below the regional median and then summing a fractional share of the bracket that includes the regional median (assuming a simple linear distribution within that bracket).

    Once all tracts in a given county or metro area are synced to today’s boundaries, the analysis identifies census tracts of greater than 500 lower-income people (in the prior year) to filter out low-population areas. For those tracts, any net loss between the prior year and the analysis year results in that tract being flagged as being at risk of displacement, and all lower-income households in that tract are flagged. To calculate the share of households at risk, the number of lower-income households living in flagged tracts are summed and divided by the total number of lower-income households living in the larger geography (county or metro). Minor deviations on a year-to-year basis should be taken in context, given that data on the tract level often fluctuates and has a significant margin of error; changes on the county and regional level are more appropriate to consider on an annual basis instead.

  19. g

    Census of Population and Housing, 1990 [United States]: Public Use Microdata...

    • search.gesis.org
    Updated Feb 1, 2001
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Commerce. Bureau of the Census (2001). Census of Population and Housing, 1990 [United States]: Public Use Microdata Sample: 1-Percent Sample - Version 3 [Dataset]. http://doi.org/10.3886/ICPSR09951.v3
    Explore at:
    Dataset updated
    Feb 1, 2001
    Dataset provided by
    ICPSR - Interuniversity Consortium for Political and Social Research
    GESIS search
    Authors
    United States Department of Commerce. Bureau of the Census
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457357https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457357

    Area covered
    United States
    Description

    Abstract (en): The Public Use Microdata Sample (PUMS) 1-Percent Sample contains household and person records for a sample of housing units that received the "long form" of the 1990 Census questionnaire. Data items include the full range of population and housing information collected in the 1990 Census, including 500 occupation categories, age by single years up to 90, and wages in dollars up to $140,000. Each person identified in the sample has an associated household record, containing information on household characteristics such as type of household and family income. All persons and housing units in the United States. A stratified sample, consisting of a subsample of the household units that received the 1990 Census "long-form" questionnaire (approximately 15.9 percent of all housing units). 2006-01-12 All files were removed from dataset 85 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 83 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 82 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 81 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 80 and flagged as study-level files, so that they will accompany all downloads.1998-08-28 The following data files were replaced by the Census Bureau: the state files (Parts 1-56), Puerto Rico (Part 72), Geographic Equivalency File (Part 84), and Public Use Microdata Areas (PUMAS) Crossing State Lines (Part 99). These files now incorporate revised group quarters data. Parts 201-256, which were separate revised group quarters files for each state, have been removed from the collection. The data fields affected by the group quarters data revisions were POWSTATE, POWPUMA, MIGSTATE and MIGPUMA. As a result of the revisions, the Maine file (Part 23) gained 763 records and Part 99 lost 763 records. In addition, the following files have been added to the collection: Ancestry Code List, Place of Birth Code List, Industry Code List, Language Code List, Occupation Code List, and Race Code List (Parts 86-91). Also, the codebook is now available as a PDF file. (1) Although all records are 231 characters in length, each file is hierarchical in structure, containing a housing unit record followed by a variable number of person records. Both record types contain approximately 120 variables. Two improvements over the 1980 PUMS files have been incorporated. First, the housing unit serial number is identified on both the housing unit record and on the person record, allowing the file to be processed as a rectangular file. In addition, each person record is assigned an individual weight, allowing users to more closely approximate published reports. Unlike previous years, the 1990 PUMS 1-Percent and 5-Percent Samples have not been released in separate geographic series (known as "A," "B," etc. records). Instead, each sample has its own set of geographies, known as "Public Use Microdata Areas" (PUMAs), established by the Census Bureau with assistance from each State Data Center. The PUMAs in the 1-Percent Sample are based on a distinction between metropolitan and nonmetropolitan areas. Metropolitan areas encompass whole central cities, Primary Metropolitan Statistical Areas (PMSAs), Metropolitan Statistical Areas (MSAs), or groups thereof, except where the city or metropolitan area contains more than 200,000 inhabitants. In that case, the city or metropolitan area is divided into several PUMAs. Nonmetropolitan PUMAs are based on areas or groups of areas outside the central city, PMSA, or MSA. PUMAs in this 1-Percent Sample may cross state lines. (2) The codebook is provided as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader. Information on how to obtain a copy of the Acrobat Reader is provided through the ICPSR Website on the Internet.

  20. 2023 Census population change by age group and regional council

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census population change by age group and regional council [Dataset]. https://datafinder.stats.govt.nz/layer/117618-2023-census-population-change-by-age-group-and-regional-council/
    Explore at:
    kml, geopackage / sqlite, dwg, csv, geodatabase, mapinfo tab, shapefile, pdf, mapinfo mifAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains life-cycle age group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the age group population counts between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by regional council.

    The life-cycle age groups are:

    • under 15 years
    • 15 to 29 years
    • 30 to 64 years
    • 65 years and over.

    Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Age concept quality rating

    Age is rated as very high quality.

    Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Census Bureau (2023). American Community Survey: 1-Year Estimates: Data Profiles 1-Year [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/american-community-survey-1-year-estimates-data-profiles-1-year-a28e5
Organization logo

American Community Survey: 1-Year Estimates: Data Profiles 1-Year

Explore at:
Dataset updated
Jul 19, 2023
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

The American Community Survey (ACS) is a uswide survey designed to provide communities a fresh look at how they are changing. The ACS replaced the decennial census long form in 2010 and thereafter by collecting long form type information throughout the decade rather than only once every 10 years. Questionnaires are mailed to a sample of addresses to obtain information about households -- that is, about each person and the housing unit itself. The American Community Survey produces demographic, social, housing and economic estimates in the form of 1 and 5-year estimates based on population thresholds. The strength of the ACS is in estimating population and housing characteristics. The data profiles provide key estimates for each of the topic areas covered by the ACS for the us, all 50 states, the District of Columbia, Puerto Rico, every congressional district, every metropolitan area, and all counties and places with populations of 65,000 or more. Although the ACS produces population, demographic and housing unit estimates,it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the us, states, counties, cities and towns, and estimates of housing units for states and counties. For 2010 and other decennial census years, the Decennial Census provides the official counts of population and housing units.

Search
Clear search
Close search
Google apps
Main menu