57 datasets found
  1. n

    High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska,...

    • cmr.earthdata.nasa.gov
    • datasets.ai
    • +6more
    not provided
    Updated May 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1386246127-NSIDCV0.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    May 23, 2023
    Time period covered
    Aug 1, 2002 - Aug 2, 2002
    Area covered
    Description

    This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.

    Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).

    Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks.

    The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data. Contact NSIDC User Services at nsidc@nsidc.org to order the data, and include an NSF OPP award number in the email.

  2. Satellite (MODIS) Thermal Hotspots and Fire Activity

    • atlas.eia.gov
    • pacificgeoportal.com
    • +11more
    Updated Jun 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Satellite (MODIS) Thermal Hotspots and Fire Activity [Dataset]. https://atlas.eia.gov/maps/b8f4033069f141729ffb298b7418b653
    Explore at:
    Dataset updated
    Jun 11, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.Consumption Best Practices:

    As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cacheable relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment.When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cacheable.Source: NASA FIRMS - Active Fire Data - for WorldScale/Resolution: 1kmUpdate Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed MethodologyArea Covered: WorldWhat can I do with this layer?The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Additional InformationMODIS stands for MODerate resolution Imaging Spectroradiometer. The MODIS instrument is on board NASA’s Earth Observing System (EOS) Terra (EOS AM) and Aqua (EOS PM) satellites. The orbit of the Terra satellite goes from north to south across the equator in the morning and Aqua passes south to north over the equator in the afternoon resulting in global coverage every 1 to 2 days. The EOS satellites have a ±55 degree scanning pattern and orbit at 705 km with a 2,330 km swath width.It takes approximately 2 – 4 hours after satellite overpass for MODIS Rapid Response to process the data, and for the Fire Information for Resource Management System (FIRMS) to update the website. Occasionally, hardware errors can result in processing delays beyond the 2-4 hour range. Additional information on the MODIS system status can be found at MODIS Rapid Response.Attribute InformationLatitude and Longitude: The center point location of the 1km (approx.) pixel flagged as containing one or more fires/hotspots (fire size is not 1km, but variable). Stored by Point Geometry. See What does a hotspot/fire detection mean on the ground?Brightness: The brightness temperature measured (in Kelvin) using the MODIS channels 21/22 and channel 31.Scan and Track: The actual spatial resolution of the scanned pixel. Although the algorithm works at 1km resolution, the MODIS pixels get bigger toward the edge of the scan. See What does scan and track mean?Date and Time: Acquisition date of the hotspot/active fire pixel and time of satellite overpass in UTC (client presentation in local time). Stored by Acquisition Date.Acquisition Date: Derived Date/Time field combining Date and Time attributes.Satellite: Whether the detection was picked up by the Terra or Aqua satellite.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel.Version: Version refers to the processing collection and source of data. The number before the decimal refers to the collection (e.g. MODIS Collection 6). The number after the decimal indicates the source of Level 1B data; data processed in near-real time by MODIS Rapid Response will have the source code “CollectionNumber.0”. Data sourced from MODAPS (with a 2-month lag) and processed by FIRMS using the standard MOD14/MYD14 Thermal Anomalies algorithm will have a source code “CollectionNumber.x”. For example, data with the version listed as 5.0 is collection 5, processed by MRR, data with the version listed as 5.1 is collection 5 data processed by FIRMS using Level 1B data from MODAPS.Bright.T31: Channel 31 brightness temperature (in Kelvins) of the hotspot/active fire pixel.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: The standard processing algorithm uses the solar zenith angle (SZA) to threshold the day/night value; if the SZA exceeds 85 degrees it is assigned a night value. SZA values less than 85 degrees are assigned a day time value. For the NRT algorithm the day/night flag is assigned by ascending (day) vs descending (night) observation. It is expected that the NRT assignment of the day/night flag will be amended to be consistent with the standard processing.Hours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.RevisionsJune 22, 2022: Added 'HOURS_OLD' field to enhance Filtering data. Added 'Last 7 days' Layer to extend data to match time range of VIIRS offering. Added Field level descriptions.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  3. a

    Recent GOES Weather Satellite Imagery

    • eo-for-disaster-management-amerigeoss.hub.arcgis.com
    • livingatlas-dcdev.opendata.arcgis.com
    • +3more
    Updated Jun 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2019). Recent GOES Weather Satellite Imagery [Dataset]. https://eo-for-disaster-management-amerigeoss.hub.arcgis.com/maps/5f25bbe4966a4205a785aaf046727c5e
    Explore at:
    Dataset updated
    Jun 18, 2019
    Dataset authored and provided by
    ArcGIS StoryMaps
    Area covered
    Description

    Map InformationThis nowCOAST updating map service provides maps depicting visible, infrared, and water vapor imagery composited from NOAA/NESDIS GOES-EAST and GOES-WEST. The horizontal resolutions of the IR, visible, and water vapor composite images are approximately 1km, 4km, and 4km, respectively. The visible and IR imagery depict the location of clouds. The water vapor imagery indicates the amount of water vapor contained in the mid to upper levels of the troposphere. The darker grays indicate drier air while the brighter grays/whites indicates more saturated air. The GOES composite imagers are updated in the nowCOAST map service every 30 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updatescheduleBackground InformationThe GOES map layer displays visible (VIS) and infrared (IR4) cloud, and water vapor (WV) imagery from the NOAA/ National Environmental Satellite, Data, and Information Service (NESDIS) Geostationary Satellites (GOES-East and GOES-West). These satellites circle the Earth in a geosynchronous orbit (i.e. orbit the equatorial plane of the Earth at a speed matching the rotation of the Earth). This allows the satellites to hover continuously over one position on the surface. The geosynchronous plane is about 35,800 km (22,300 miles) above the Earth which is high enough to allow the satellites a full-disc view of the Earth. GOES-East is positioned at 75 deg W longitude and the equator. GOES-West is located at 135 deg W and the equator. The two satellites cover an area from 20 deg W to 165 deg E. The images are derived from data from GOES' Imagers. An imager is a multichannel instrument that senses radiant energy and reflected solar energy from the Earth's surface and atmosphere. The VIS, IR4, and WV images are obtained from GOES Imager Channels 1, 4, and 3, respectively. The GOES raster images are obtained from NESDIS servers in geo-referenced Tagged-Image File Format (geoTIFF).Time InformationThis map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfoReferencesNOAA, 2013: Geostationary Operational Environmental Satellites (GOES). (Available at http://www.ospo.noaa.gov/Operations/GOES/index.html)A Basic Introduction to Water Vapor Imagery. (Available at http://cimss.ssec.wisc.edu/goes/misc/wv/wv_intro.html)CIMSS, 1996: Water Vapor Imagery Tutorial (Available at http://cimss.ssec.wisc.edu/goes/misc/wv/)

  4. d

    Tree Canopy 2022

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2025). Tree Canopy 2022 [Dataset]. https://catalog.data.gov/dataset/tree-canopy-2022
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    data.austintexas.gov
    Description

    City of Austin Open Data Terms of Use https://data.austintexas.gov/stories/s/ranj-cccq This dataset was created to depict approximate tree canopy cover for all land within the City of Austin's "full watershed regulation area." Intended for planning purposes and measuring citywide percent canopy. Definition: Tree canopy is defined as the layer of leaves, branches, and stems of trees that cover the ground when viewed from above. Methods: The 2022 tree canopy layer was derived from satellite imagery (Maxar) and aerial imagery (NAIP). Images were used to extract tree canopy into GIS vector features. First, a “visual recognition engine” generated the vector features. The engine used machine learning algorithms to detect and label image pixels as tree canopy. Then using prior knowledge of feature geometries, more modeling algorithms were used to predict and transform probability maps of labeled pixels into finished vector polygons depicting tree canopy. The resulting features were reviewed and edited through manual interpretation by GIS professionals. When appropriate, NAIP 2022 aerial imagery supplemented satellite images that had cloud cover, and a manual editing process made sure tree canopy represented 2022 conditions. Finally, an independent accuracy assessment was performed by the City of Austin and the Texas A&M Forest Service for quality assurance. GIS professionals assessed agreement between the tree canopy data and its source satellite imagery. An overall accuracy of 98% was found. Only 23 errors were found out of a total 1,000 locations reviewed. These were mostly omission errors (e.g. not including canopy in this dataset when canopy is shown in the satellite or aerial image). Best efforts were made to ensure ground-truth locations contained a tree on the ground. To ensure this, location data were used from City of Austin and Texas A&M Forest Service databases. Analysis: The City of Austin measures tree canopy using the calculation: acres of tree canopy divided by acres of land. The area of interest for the land acres is evaluated at the City of Austin's jurisdiction including Full Purpose, Limited Purpose, and Extraterritorial jurisdictions as of May 2023. New data show, in 2022, tree canopy covered 41% of the total land area within Austin's city limits (using city limit boundaries May 2023 and included in the download as layer name "city_of_austin_2023"). 160,046.50 canopy acres (2022) / 395,037.53 land acres = 40.51% ~41%. This compares to 36% last measured in 2018, and a historical average that’s also hovered around 36%. The time period between 2018 and 2022 saw a 5 percentage point change resulting in over 19K acres of canopy gained (estimated). Data Disclaimer: It's possible changes in percent canopy over the years is due to annexation and improved data methods (e.g. higher resolution imagery, AI, software used, etc.) in addition to actual in changes in tree canopy cover on the ground. For planning purposes only. Dataset does not account for individual trees, tree species nor any metric for tree canopy height. Tree canopy data is provided in vector GIS format housed in a Geodatabase. Download and unzip the folder to get started. Please note, errors may exist in this dataset due to the variation in species composition and land use found across the study area. This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. This product has been produced by the City of Austin for the sole purpose of geographic reference. No warranty is made by the City of Austin regarding specific accuracy or completeness. Data Provider: Ecopia AI Tech Corporation and PlanIT Geo, Inc. Data derived from Maxar Technologies, Inc. and USDA NAIP imagery

  5. a

    Data from: Google Earth Engine (GEE)

    • amerigeo.org
    • data.amerigeoss.org
    • +1more
    Updated Nov 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://www.amerigeo.org/datasets/google-earth-engine-gee
    Explore at:
    Dataset updated
    Nov 28, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

  6. Satellite (VIIRS) Thermal Hotspots and Fire Activity

    • atlas.eia.gov
    • portal30x30.com
    • +30more
    Updated Apr 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Satellite (VIIRS) Thermal Hotspots and Fire Activity [Dataset]. https://atlas.eia.gov/datasets/esri2::satellite-viirs-thermal-hotspots-and-fire-activity/about
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Pacific Ocean, Oceania, South Pacific Ocean
    Description

    This layer presents detectable thermal activity from VIIRS satellites for the last 7 days. VIIRS Thermal Hotspots and Fire Activity is a product of NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) Earth Observation Data, part of NASA's Earth Science Data.Consumption Best Practices:

    As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cacheable relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment.When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cacheable.Source: NASA LANCE - VNP14IMG_NRT active fire detection - WorldScale/Resolution: 375-meterUpdate Frequency: Hourly using the aggregated live feed methodologyArea Covered: WorldWhat can I do with this layer?This layer represents the most frequently updated and most detailed global remotely sensed wildfire information. Detection attributes include time, location, and intensity. It can be used to track the location of fires from the recent past, a few hours up to seven days behind real time. This layer also shows the location of wildfire over the past 7 days as a time-enabled service so that the progress of fires over that timeframe can be reproduced as an animation.The VIIRS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Fire points in this service are generally available within 3 1/4 hours after detection by a VIIRS device. LANCE estimates availability at around 3 hours after detection, and esri livefeeds updates this feature layer every 15 minutes from LANCE.Even though these data display as point features, each point in fact represents a pixel that is >= 375 m high and wide. A point feature means somewhere in this pixel at least one "hot" spot was detected which may be a fire.VIIRS is a scanning radiometer device aboard the Suomi NPP, NOAA-20, and NOAA-21 satellites that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in several visible and infrared bands. The VIIRS Thermal Hotspots and Fire Activity layer is a livefeed from a subset of the overall VIIRS imagery, in particular from NASA's VNP14IMG_NRT active fire detection product. The downloads are automatically downloaded from LANCE, NASA's near real time data and imagery site, every 15 minutes.The 375-m data complements the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Hotspots and Fire Activity layer; they both show good agreement in hotspot detection but the improved spatial resolution of the 375 m data provides a greater response over fires of relatively small areas and provides improved mapping of large fire perimeters.Attribute informationLatitude and Longitude: The center point location of the 375 m (approximately) pixel flagged as containing one or more fires/hotspots.Satellite: Whether the detection was picked up by the Suomi NPP satellite (N) or NOAA-20 satellite (1) or NOAA-21 satellite (2). For best results, use the virtual field WhichSatellite, redefined by an arcade expression, that gives the complete satellite name.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel. This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11 deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: D = Daytime fire, N = Nighttime fireHours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.Additional information can be found on the NASA FIRMS site FAQ.Note about near real time data:Near real time data is not checked thoroughly before it's posted on LANCE or downloaded and posted to the Living Atlas. NASA's goal is to get vital fire information to its customers within three hours of observation time. However, the data is screened by a confidence algorithm which seeks to help users gauge the quality of individual hotspot/fire points. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Medium confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.RevisionsMarch 7, 2024: Updated to include source data from NOAA-21 Satellite.September 15, 2022: Updated to include 'Hours_Old' field. Time series has been disabled by default, but still available.July 5, 2022: Terms of Use updated to Esri Master License Agreement, no longer stating that a subscription is required!This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  7. g

    Data from: HydroSat: a repository of global water cycle products from...

    • dataservices.gfz-potsdam.de
    Updated 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Tourian; Omid Elmi; Yasin Shafaghi; Sajedeh Behnia; Peyman Saemian; Ron Schlesinger; Nico Sneeuw; Yasin Shafaghi; Sajedeh Behnia (2021). HydroSat: a repository of global water cycle products from spaceborne geodetic sensors [Dataset]. http://doi.org/10.5880/fidgeo.2021.017
    Explore at:
    Dataset updated
    2021
    Dataset provided by
    datacite
    GFZ Data Services
    Authors
    Mohammad Tourian; Omid Elmi; Yasin Shafaghi; Sajedeh Behnia; Peyman Saemian; Ron Schlesinger; Nico Sneeuw; Yasin Shafaghi; Sajedeh Behnia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Against the backdrop of global change, both in terms of climate and demography, there is an increasing need for monitoring global water cycle. The publicly available global database is very limited in its spatial and temporal coverage worldwide. Moreover, the acquisition of in situ data and their delivery to the database are on the decline since the late 1970s be it for economical, political or other reasons. Given the insufficient monitoring from in situ gauge networks, and without any outlook of improvement, spaceborne approaches are currently being investigated. Satellite-based Earth observation with its global coverage and homogeneous accuracy has been demonstrated to be a potential alternative to in situ measurements. The Institute of Geodesy (GIS), within the Faculty of Aerospace Engineering and Geodesy at University of Stuttgart has a long-standing expertise, both theoretically and practically, in dynamic satellite geodesy. In recent years, GIS initiated and participated in studies and projects on application of spaceborne geodetic sensors for hydrological studies. HydroSat provides the results of these studies and projects, in which spaceborne geodetic sensors are used to estimate Surface water extent from satellite imagery Water level from satellite altimetry Water Storage Anomaly from satellite gravimetry River discharge from satellite altimetry, imagery or gravimetry

  8. e

    Malawi - High Resolution Settlement Layer - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Apr 19, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Malawi - High Resolution Settlement Layer - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/malawi-high-resolution-settlement-layer-2015
    Explore at:
    Dataset updated
    Apr 19, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malawi
    Description

    The High Resolution Settlement Layer (HRSL) provides estimates of human population distribution at a resolution of 1 arc-second (approximately 30m) for the year 2015. The population estimates are based on recent census data and high-resolution (0.5m) satellite imagery from DigitalGlobe. The population grids provide detailed delineation of settlements in both urban and rural areas, which is useful for many research areas—from disaster response and humanitarian planning to the development of communications infrastructure. The settlement extent data were developed by the Connectivity Lab at Facebook using computer vision techniques to classify blocks of optical satellite data as settled (containing buildings) or not. Center for International Earth Science Information Networks (CIESIN) at Earth Institute Columbia University used proportional allocation to distribute population data from subnational census data to the settlement extents. The data-sets contain the population surfaces, metadata, and data quality layers. The population data surfaces are stored as GeoTIFF files for use in remote sensing or geographic information system (GIS) software. The data can also be explored via an interactive map - http://columbia.maps.arcgis.com/apps/View/index.html?appid=ce441db6aa54494cbc6c6cee11b95917 Citation: Facebook Connectivity Lab and Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. High Resolution Settlement Layer (HRSL). Source imagery for HRSL © 2016 DigitalGlobe.

  9. Segment Anything Model (SAM)

    • morocco.africageoportal.com
    • angola.africageoportal.com
    • +3more
    Updated Apr 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Segment Anything Model (SAM) [Dataset]. https://morocco.africageoportal.com/content/9b67b441f29f4ce6810979f5f0667ebe
    Explore at:
    Dataset updated
    Apr 17, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Segmentation models perform a pixel-wise classification by classifying the pixels into different classes. The classified pixels correspond to different objects or regions in the image. These models have a wide variety of use cases across multiple domains. When used with satellite and aerial imagery, these models can help to identify features such as building footprints, roads, water bodies, crop fields, etc.Generally, every segmentation model needs to be trained from scratch using a dataset labeled with the objects of interest. This can be an arduous and time-consuming task. Meta's Segment Anything Model (SAM) is aimed at creating a foundational model that can be used to segment (as the name suggests) anything using zero-shot learning and generalize across domains without additional training. SAM is trained on the Segment Anything 1-Billion mask dataset (SA-1B) which comprises a diverse set of 11 million images and over 1 billion masks. This makes the model highly robust in identifying object boundaries and differentiating between various objects across domains, even though it might have never seen them before. Use this model to extract masks of various objects in any image.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS. Fine-tuning the modelThis model can be fine-tuned using SamLoRA architecture in ArcGIS. Follow the guide and refer to this sample notebook to fine-tune this model.Input8-bit, 3-band imagery.OutputFeature class containing masks of various objects in the image.Applicable geographiesThe model is expected to work globally.Model architectureThis model is based on the open-source Segment Anything Model (SAM) by Meta.Training dataThis model has been trained on the Segment Anything 1-Billion mask dataset (SA-1B) which comprises a diverse set of 11 million images and over 1 billion masks.Sample resultsHere are a few results from the model.

  10. d

    GIS Map of Mosaicked LandSat 7 ETM+ Satellite Imagery of the Marshall...

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Mar 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2025). GIS Map of Mosaicked LandSat 7 ETM+ Satellite Imagery of the Marshall Islands, Micronesia Federated States, and the Republic of Palau from January 1, 1999 to December 31, 2003 (NCEI Accession 0067475) [Dataset]. https://catalog.data.gov/dataset/gis-map-of-mosaicked-landsat-7-etm-satellite-imagery-of-the-marshall-islands-micronesia-federat
    Explore at:
    Dataset updated
    Mar 1, 2025
    Dataset provided by
    (Point of Contact)
    Area covered
    Marshall Islands, Micronesia, Palau
    Description

    These maps show for the first time an accurate georeferenced mosaic of the Marshall Islands, the Federated States of Micronesia, the Republic of Palau and their respective corresponding shallow water areas. Shallow-water (generally, less than 30 meters) bank and land areas in these areas were identified through analysis of Landsat 7 ETM+ satellite imagery. The mosaics are laid over ETOPO2 Bathymetric Data to provide an enhanced understanding of how the Atolls and Islands fit together. In addition selected islands and atolls are shown next to the mosaic. This project was conducted in support of the U.S. Coral Reef Task Force. Data in this accession are best used with appropriate Geographic Information System (GIS) software.

  11. e

    Satellite (VIIRS) Thermal Hotspots and Fire Activity

    • climate.esri.ca
    • climat.esri.ca
    • +1more
    Updated Jul 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2020). Satellite (VIIRS) Thermal Hotspots and Fire Activity [Dataset]. https://climate.esri.ca/datasets/arcgis-content::satellite-viirs-thermal-hotspots-and-fire-activity-2
    Explore at:
    Dataset updated
    Jul 10, 2020
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Description

    This app is part of Indicators of the Planet. Please see https://livingatlas.arcgis.com/indicatorsThis layer presents detectable thermal activity from VIIRS satellites for the last 7 days. VIIRS Thermal Hotspots and Fire Activity is a product of NASA’s Land, Atmosphere Near real-time Capability for EOS (LANCE) Earth Observation Data, part of NASA's Earth Science Data.Source: NASA LANCE - VNP14IMG_NRT active fire detection - WorldScale/Resolution: 375-meterUpdate Frequency: Hourly using the aggregated live feed methodologyArea Covered: WorldWhat can I do with this layer?This layer represents the most frequently updated and most detailed global remotely sensed wildfire information. Detection attributes include time, location, and intensity. It can be used to track the location of fires from the recent past, a few hours up to seven days behind real time. This layer also shows the location of wildfire over the past 7 days as a time-enabled service so that the progress of fires over that timeframe can be reproduced as an animation.The VIIRS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.Fire points in this service are generally available within 3 1/4 hours after detection by a VIIRS device. LANCE estimates availability at around 3 hours after detection, and esri livefeeds updates this feature layer every 15 minutes from LANCE.Even though these data display as point features, each point in fact represents a pixel that is >= 375 m high and wide. A point feature means somewhere in this pixel at least one "hot" spot was detected which may be a fire.VIIRS is a scanning radiometer device aboard the Suomi NPP and NOAA-20 satellites that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in several visible and infrared bands. The VIIRS Thermal Hotspots and Fire Activity layer is a livefeed from a subset of the overall VIIRS imagery, in particular from NASA's VNP14IMG_NRT active fire detection product. The downloads are automatically downloaded from LANCE, NASA's near real time data and imagery site, every 15 minutes.The 375-m data complements the 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Hotspots and Fire Activity layer; they both show good agreement in hotspot detection but the improved spatial resolution of the 375 m data provides a greater response over fires of relatively small areas and provides improved mapping of large fire perimeters.Attribute informationLatitude and Longitude: The center point location of the 375 m (approximately) pixel flagged as containing one or more fires/hotspots.Satellite: Whether the detection was picked up by the Suomi NPP satellite (N) or NOAA-20 satellite (1). For best results, use the virtual field WhichSatellite, redefined by an arcade expression, that gives the complete satellite name.Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel. This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.Please note: Low confidence nighttime pixels occur only over the geographic area extending from 11 deg E to 110 deg W and 7 deg N to 55 deg S. This area describes the region of influence of the South Atlantic Magnetic Anomaly which can cause spurious brightness temperatures in the mid-infrared channel I4 leading to potential false positive alarms. These have been removed from the NRT data distributed by FIRMS.FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).DayNight: D = Daytime fire, N = Nighttime fireNote about near real time data:Near real time data is not checked thoroughly before it's posted on LANCE or downloaded and posted to the Living Atlas. NASA's goal is to get vital fire information to its customers within three hours of observation time. However, the data is screened by a confidence algorithm which seeks to help users gauge the quality of individual hotspot/fire points. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Medium confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.

  12. Cloud Mask Generation (Sentinel-2)

    • hub.arcgis.com
    • morocco.africageoportal.com
    • +2more
    Updated Jul 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Cloud Mask Generation (Sentinel-2) [Dataset]. https://hub.arcgis.com/content/1e1ec9602f4743108708ccdf362e3c48
    Explore at:
    Dataset updated
    Jul 25, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Satellite imagery has several applications, including land use and land cover classification, change detection, object detection, etc. Satellite based remote sensing sensors often encounter cloud coverage due to which clear imagery of earth is not collected. The clouded regions should be excluded, or cloud removal algorithms must be applied, before the imagery can be used for analysis. Most of these preprocessing steps require a cloud mask. In case of single-scene imagery, though tedious, it is relatively easy to manually create a cloud mask. However, for a larger number of images, an automated approach for identifying clouds is necessary. This model can be used to automatically generate a cloud mask from Sentinel-2 imagery.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Fine-tuning the modelThis model can be fine-tuned using the Train Deep Learning Model tool. Follow the guide to fine-tune this model.InputSentinel-2 L2A imagery in the form of a raster, mosaic dataset or image service.OutputClassified raster containing three classes: Low density, Medium density and High density.Applicable geographiesThis model is expected to work well in Europe and the United States. This model works well for land based areas. Large water bodies such as ocean, seas and lakes should be avoided.Model architectureThis model uses the UNet model architecture implemented in ArcGIS API for Python.Accuracy metricsThis model has an overall accuracy of 94 percent with L2A imagery. The table below summarizes the precision, recall and F1-score of the model on the validation dataset. The comparatively low precision, recall and F1 score for Low density clouds might cause false detection of such clouds in certain urban areas. Also, for certain seasonal clouds some extremely bright pixels might be missed out.ClassPrecisionRecallF1 scoreHigh density0.9600.9750.968Medium density0.9050.8970.901Low density0.7740.5710.657Sample resultsHere are a few results from the model.

  13. A

    2009 Lake County Aerial - SW Quarter

    • data.amerigeoss.org
    • s.cnmilf.com
    • +3more
    html
    Updated Mar 4, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). 2009 Lake County Aerial - SW Quarter [Dataset]. https://data.amerigeoss.org/gl/dataset/a6f08f0e-8046-4e69-956d-100322242756
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 4, 2019
    Dataset provided by
    United States
    License

    https://hub.arcgis.com/api/v2/datasets/bdcef355eb0a47c6b58d33c8566206b3/licensehttps://hub.arcgis.com/api/v2/datasets/bdcef355eb0a47c6b58d33c8566206b3/license

    Description

    This six inch pixel resolution color aerial photography was flown between May 9, 2009 and May 26, 2009. The files are provided in JPEG2000, an open format supported by most GIS and CAD software packages. Its intended usage for viewing is 1" = 100. The photography has been orthorectified to meet National Map Accuracy Standards for its capture scale. The images are georeferenced to the Illinois State Plane, Eastern Zone, using the NAD83 NSRS2007 horizontal datum. The data set is tiled for dissemination into many separate tiles, each of which is 2500 feet on a side.

  14. Statewide Crop Mapping

    • data.cnra.ca.gov
    • data.ca.gov
    • +2more
    data, gdb, html +3
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). Statewide Crop Mapping [Dataset]. https://data.cnra.ca.gov/dataset/statewide-crop-mapping
    Explore at:
    zip(144060723), shp(107610538), gdb(85891531), zip(140021333), zip(189880202), zip(98690638), rest service, zip(179113742), data, zip(94630663), gdb(76631083), shp(126828193), gdb(86655350), zip(88308707), gdb(86886429), shp(126548912), zip(159870566), html, zip(169400976)Available download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.

    Thank you for your interest in DWR land use datasets.

    The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.

    Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.

    For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.

    For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.

    For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.

    Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.

  15. Full Climatology With Hourly Timesteps (TRMM LIS Very High Resolution...

    • disasters.amerigeoss.org
    • disasters-usnsdi.opendata.arcgis.com
    Updated Dec 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA ArcGIS Online (2022). Full Climatology With Hourly Timesteps (TRMM LIS Very High Resolution Climatology Flashes/(sq km * year)) (TRMM Lightning Imaging Sensor Climatologies) [Dataset]. https://disasters.amerigeoss.org/datasets/6fcb8c86e5f84471b7840ece5cdfeba6
    Explore at:
    Dataset updated
    Dec 8, 2022
    Dataset provided by
    NASAhttp://nasa.gov/
    Authors
    NASA ArcGIS Online
    Area covered
    Description

    ArcGIS Image Service

    Mean LIS Flash Rate Density 
    
    Time Interval: Diurnal Climatology
    
    Platform: TRMM
    
    Time Extent: 1998-01-01 to 2013-12-31
    
    Projection: GCS WGS84
    
    Extent: (38.0°, 180.0°), (-38.0°, -180.0°)
    
    Other Formats: OGC WMS, OGC WCS, REST
    
    
          Collection
        The LIS 0.1 Degree Very High Resolution Gridded Lightning Diurnal Climatology (VHRDC) dataset consists of gridded diurnal climatologies of total lightning flash rates seen by the Lightning Imaging Sensor (LIS) from January 1, 1998 through December 31, 2013. LIS is an instrument on the Tropical Rainfall Measurement Mission satellite (TRMM) used to detect the distribution and variability of total lightning occurring in the Earth's tropical and subtropical regions. This information can be used for severe storm detection and analysis, and also for lightning-atmosphere interaction studies. The gridded climatologies include annual mean flash rate, mean diurnal cycle of flash rate with 24 hour resolution, and mean annual cycle of flash rate with daily, monthly, or seasonal resolution. All datasets are in 0.1 degree spatial resolution. The mean annual cycle of flash rate datasets (i.e., daily, monthly or seasonal) have both 49-day and 1 degree boxcar moving averages to remove diurnal cycle and smooth regions with low flash rate, making the results more robust. (GHRC)
    
        Source Data: DAAC, CMR, Earthdata Search
    
    
    
    
    
    
    
    
    
    Satellite Mapping and Analysis of Severe Hailstorms (SMASH) Project
    

    This Hailstorm research project seeks to address knowledge gaps in the severe hail climatology using regional to global scale satellite observations and provides mechanisms to explore related datasets.

    For questions/issues please contact: kristopher.m.bedka@nasa.gov

    SMASH AGOL Group | NASA Applied Sciences | NASA Disasters Mapping Portal | NASA Langley Research Center Science Directorate

  16. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric, Dr; Lawrey, Eric, Dr (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric, Dr; Lawrey, Eric, Dr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.

    Method: The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (not yet published) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.

    Single merged composite GeoTiff: The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.

    Change Log: 2023-03-02: Eric Lawrey Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

    22 Nov 2023: Eric Lawrey Added the data and maps for close up of Mer. - 01-data/TS_DNRM_Mer-aerial-imagery/ - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    Source datasets: Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302 Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose. CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland This is the high resolution imagery used to create the map of Mer.

    Marine satellite imagery (Sentinel 2 and Landsat 8) (AIMS), https://eatlas.org.au/data/uuid/5d67aa4d-a983-45d0-8cc1-187596fa9c0c - World_AIMS_Marine-satellite-imagery

    Data Location: This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.

  17. G

    Canada Landcover - Derived from AVHRR

    • open.canada.ca
    • catalogue.arctic-sdi.org
    fgdb/gdb, geojson +1
    Updated Feb 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agriculture and Agri-Food Canada (2023). Canada Landcover - Derived from AVHRR [Dataset]. https://open.canada.ca/data/en/dataset/86d78b4b-d6e1-4272-bdbb-3da6381fb522
    Explore at:
    pdf, fgdb/gdb, geojsonAvailable download formats
    Dataset updated
    Feb 23, 2023
    Dataset provided by
    Agriculture and Agri-Food Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1988 - Jan 1, 1991
    Area covered
    Canada
    Description

    This land cover data set was derived from the Advanced Very High Resolution Radiometer (AVHRR) sensor operating on board the United States National Oceanic and Atmospheric Administration (NOAA) satellites. Information on the NOAA series of satellites can be found at www.noaa.gov/satellites.html The vegetation and land cover information set has been classified into twelve categories. Information on the classification of the vegetation and land cover, raster to vector conversion, generalization for cartographic presentations is included in the paper "The Canada Vegetation and Land Cover: A Raster and Vector Data Set for GIS Applications - Uses in Agriculture" (https://geogratis.cgdi.gc.ca/download/landcover/scale/gis95ppr.pdf). A soil quality evaluation was obtained by cross-referencing the AVHRR information with Census of Agriculture records and biophysical (Soil Landscapes of Canada) data and is also included in the above paper. AVHRR Land Cover Data approximates a 1:2M scale and was done originally for Agriculture Canada. The projection used is Lambert Conformal Conic (LCC) 49/77 with origin at 49N 95W.

  18. Imagery

    • data.openlaredo.com
    • noveladata.com
    • +32more
    html
    Updated Sep 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Portal (2021). Imagery [Dataset]. https://data.openlaredo.com/dataset/imagery
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 21, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    GIS Portal
    Description

    This map features satellite imagery for the world and high-resolution aerial imagery for many areas. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Imagery map service description.

  19. d

    Land Cover 2020

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). Land Cover 2020 [Dataset]. https://catalog.data.gov/dataset/land-cover-2020
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    These data represent detailed land cover in Washington, DC. The data were derived using remote sensing technologies on satellite imagery from the Pleiades satellite, flown in 2020 and 2020 DC LiDAR. This dataset provided as an ArcGIS Image service. Please note, the download feature for this image service in Open Data DC provides a compressed PNG, JPEG or TIFF. The full raster GeoTIFF dataset is available under additional options when viewing downloads.

  20. e

    Ghana - High Resolution Settlement Layer - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Mar 23, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Ghana - High Resolution Settlement Layer - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/high-resolution-settlement-layer-ghana-in-2015
    Explore at:
    Dataset updated
    Mar 23, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ghana
    Description

    The High Resolution Settlement Layer (HRSL) provides estimates of human population distribution at a resolution of 1 arc-second (approximately 30m) for the year 2015. The population estimates are based on recent census data and high-resolution (0.5m) satellite imagery from DigitalGlobe. The population grids provide detailed delineation of settlements in both urban and rural areas, which is useful for many research areas—from disaster response and humanitarian planning to the development of communications infrastructure. The settlement extent data were developed by the Connectivity Lab at Facebook using computer vision techniques to classify blocks of optical satellite data as settled (containing buildings) or not. Center for International Earth Science Information Networks (CIESIN) at Earth Institute Columbia University used proportional allocation to distribute population data from subnational census data to the settlement extents. The data-sets contain the population surfaces, metadata, and data quality layers. The population data surfaces are stored as GeoTIFF files for use in remote sensing or geographic information system (GIS) software. The data can also be explored via an interactive map - http://columbia.maps.arcgis.com/apps/View/index.html?appid=ce441db6aa54494cbc6c6cee11b95917 Citation: Facebook Connectivity Lab and Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. High Resolution Settlement Layer (HRSL). Source imagery for HRSL © 2016 DigitalGlobe.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2023). High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1386246127-NSIDCV0.html

High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1

ARCSS304_1

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
not providedAvailable download formats
Dataset updated
May 23, 2023
Time period covered
Aug 1, 2002 - Aug 2, 2002
Area covered
Description

This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.

Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).

Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks.

The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data. Contact NSIDC User Services at nsidc@nsidc.org to order the data, and include an NSF OPP award number in the email.

Search
Clear search
Close search
Google apps
Main menu