100+ datasets found
  1. Average data use of leading navigation apps in the U.S. 2020

    • statista.com
    Updated Oct 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
    Explore at:
    Dataset updated
    Oct 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2020
    Area covered
    United States
    Description

    As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

  2. Google Maps Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Google Maps Dataset [Dataset]. https://brightdata.com/products/datasets/google-maps
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 8, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.

  3. Most popular navigation apps in the U.S. 2023, by downloads

    • statista.com
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular navigation apps in the U.S. 2023, by downloads [Dataset]. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
    Explore at:
    Dataset updated
    Feb 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.

    Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.

    Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.

  4. 🌎 Location Intelligence Data | From Google Map

    • kaggle.com
    zip
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azhar Saleem (2024). 🌎 Location Intelligence Data | From Google Map [Dataset]. https://www.kaggle.com/datasets/azharsaleem/location-intelligence-data-from-google-map
    Explore at:
    zip(1911275 bytes)Available download formats
    Dataset updated
    Apr 21, 2024
    Authors
    Azhar Saleem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    👨‍💻 Author: Azhar Saleem

    "https://github.com/azharsaleem18" target="_blank"> https://img.shields.io/badge/GitHub-Profile-blue?style=for-the-badge&logo=github" alt="GitHub Profile"> "https://www.kaggle.com/azharsaleem" target="_blank"> https://img.shields.io/badge/Kaggle-Profile-blue?style=for-the-badge&logo=kaggle" alt="Kaggle Profile"> "https://www.linkedin.com/in/azhar-saleem/" target="_blank"> https://img.shields.io/badge/LinkedIn-Profile-blue?style=for-the-badge&logo=linkedin" alt="LinkedIn Profile">
    "https://www.youtube.com/@AzharSaleem19" target="_blank"> https://img.shields.io/badge/YouTube-Profile-red?style=for-the-badge&logo=youtube" alt="YouTube Profile"> "https://www.facebook.com/azhar.saleem1472/" target="_blank"> https://img.shields.io/badge/Facebook-Profile-blue?style=for-the-badge&logo=facebook" alt="Facebook Profile"> "https://www.tiktok.com/@azhar_saleem18" target="_blank"> https://img.shields.io/badge/TikTok-Profile-blue?style=for-the-badge&logo=tiktok" alt="TikTok Profile">
    "https://twitter.com/azhar_saleem18" target="_blank"> https://img.shields.io/badge/Twitter-Profile-blue?style=for-the-badge&logo=twitter" alt="Twitter Profile"> "https://www.instagram.com/azhar_saleem18/" target="_blank"> https://img.shields.io/badge/Instagram-Profile-blue?style=for-the-badge&logo=instagram" alt="Instagram Profile"> "mailto:azharsaleem6@gmail.com"> https://img.shields.io/badge/Email-Contact%20Me-red?style=for-the-badge&logo=gmail" alt="Email Contact">

    Dataset Overview

    Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.

    Key Features

    • Business Details: Includes unique identifiers, names, and contact information.
    • Geolocation Data: Precise latitude and longitude for pinpointing business locations on a map.
    • Operational Timings: Detailed opening and closing hours for each day of the week, allowing analysis of business activity patterns.
    • Customer Engagement: Data on review counts and ratings, offering insights into customer satisfaction and business popularity.
    • Additional Attributes: Links to business websites, time zone information, and country-specific details enrich the dataset for comprehensive analysis.

    Potential Use Cases

    This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.

    Dataset Structure

    The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:

    • business_id: A unique Google Places identifier for each business, ensuring distinct entries.
    • phone_number: The contact number associated with the business. It provides a direct means of communication.
    • name: The official name of the business as listed on Google Maps.
    • full_address: The complete postal address of the business, including locality and geographic details.
    • latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.
    • longitude: The geographic longitude coordinate of the business location.
    • review_count: The total number of reviews the business has received on Google Maps.
    • rating: The average user rating out of 5 for the business, reflecting customer satisfaction.
    • timezone: The world timezone the business is located in, important for temporal analysis.
    • website: The official website URL of the business, providing further information and contact options.
    • category: The category or type of service the business provides, such as restaurant, museum, etc.
    • claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.
    • plus_code: A sho...
  5. d

    POI Database Worldwide Coverage | Outscraper

    • datarade.ai
    .json, .csv, .xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). POI Database Worldwide Coverage | Outscraper [Dataset]. https://datarade.ai/data-products/outscraper-poi-database-worldwide-coverage-outscraper
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Area covered
    Svalbard and Jan Mayen, Lebanon, Niger, United Arab Emirates, Sao Tome and Principe, Barbados, Kiribati, United Kingdom, Turks and Caicos Islands, Zimbabwe
    Description

    Outscraper's Location Intelligence Service is a powerful and innovative tool that harnesses the rich data available from Google Maps to provide valuable Point of Interest (POI) data for businesses. This service is an excellent solution for local intelligence needs, using advanced technology to efficiently gather and analyze data from Google Maps, creating precise and relevant POI datasets​.

    This Location Intelligence Service is backed by reliable and up-to-date data, thanks to Outscraper's advanced web scraping technology. This ensures that the data extracted from Google Maps is both accurate and fresh, providing a dependable source of data for your business operations and strategic planning​.

    A key feature of Outscraper's Location Intelligence Service is its advanced filtering capabilities, enabling you to retrieve only the POI data you require. This means you can target specific categories, locations, and other criteria to get the most relevant and valuable data for your business needs, eliminating the need to sift through irrelevant records​.

    With Outscraper, you also get worldwide coverage for your POI data needs. The service's advanced data scraping technology allows you to collect data from any country and city without limitations, making it an invaluable tool for businesses with global operations or those seeking to expand internationally​.

    Outscraper provides a vast amount of data, offering the largest number of fields available to compile and enrich your POI data. With more than 40 data fields, you can create comprehensive and detailed datasets that provide deep insights into your areas of interest​.

    Outscraper's Location Intelligence Service is designed to be user-friendly, even for those without coding skills. Creating a Google Maps scraping task is quick and simple with the Outscraper App Dashboard, where you select a few parameters like category, location, limits, language, and file extension to scrape data from Google Maps​.

    Outscraper also offers API support, providing a fast and easy way to fetch Google Maps results in real-time. This feature is ideal for businesses that need to access location data quickly and efficiently​.

  6. m

    Google Map Data, Google Map Data Scraper, Business location Data- Scrape All...

    • apiscrapy.mydatastorefront.com
    Updated May 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2022). Google Map Data, Google Map Data Scraper, Business location Data- Scrape All Publicly Available Data From Google Map & Other Platforms [Dataset]. https://apiscrapy.mydatastorefront.com/products/google-map-data-google-map-data-scraper-business-location-d-apiscrapy
    Explore at:
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    APISCRAPY
    Area covered
    United States Minor Outlying Islands, Moldova, Lithuania, Latvia, Romania, Liechtenstein, Greece, Germany, Luxembourg, Iceland
    Description

    Explore APISCRAPY, your AI-powered Google Map Data Scraper. Easily extract Business Location Data from Google Maps and other platforms. Seamlessly access and utilize publicly available map data for your business needs. Scrape All Publicly Available Data From Google Maps & Other Platforms.

  7. d

    Outscraper Google Maps Scraper

    • datarade.ai
    .json, .csv, .xls
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Outscraper Google Maps Scraper [Dataset]. https://datarade.ai/data-products/outscraper-google-maps-scraper-outscraper
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Dec 9, 2021
    Area covered
    United States
    Description

    Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.

    Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.

    Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.

    By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.

    In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.

    https://outscraper.com/google-maps-scraper/

    As a result of the Google Maps scraping, your data file will contain the following details:

    Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID

    If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.

    Domain Contact Scraper can scrape these details:

    Email Facebook Github Instagram Linkedin Phone Twitter Youtube

  8. d

    Google Maps Case Study

    • data.gov.au
    • data.act.gov.au
    • +1more
    pdf
    Updated Nov 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    www.data.act.gov.au (2021). Google Maps Case Study [Dataset]. https://data.gov.au/dataset/ds-act-https%3A%2F%2Fwww.data.act.gov.au%2Fapi%2Fviews%2Fdz6v-nett
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 25, 2021
    Dataset provided by
    www.data.act.gov.au
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This case study document provides information on how Google Maps is using our open datasets and articulates citizen benefits. This case study document provides information on how Google Maps is using our open datasets and articulates citizen benefits.

  9. My Map Activity

    • library.ncge.org
    Updated Jul 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2021). My Map Activity [Dataset]. https://library.ncge.org/documents/NCGE::my-map-activity--1/about
    Explore at:
    Dataset updated
    Jul 27, 2021
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Author: E Gunderson, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 8, high schoolResource type: lessonSubject topic(s): gisRegion: united statesStandards: Minnesota Social Studies Standards

    Standard 1. People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context.Objectives: Students will be able to:

    1. Create a custom map using Google Maps
    2. Collect and plot data using Google MapsSummary: Students will learn the basics of Google Maps while using geospatial data to create their neighborhood map with the places they spend time. They will also collect data of their choice from another source (website, book, personal life) and plot the data using Google Maps.
  10. WMTS View Service for the Cadastral Map (KM) - Google Maps Scale Set

    • agrihub.cz
    • data.europa.eu
    Updated Sep 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Czech Office for Surveying, Mapping and Cadastre (2025). WMTS View Service for the Cadastral Map (KM) - Google Maps Scale Set [Dataset]. https://www.agrihub.cz/micka/en/record/basic/CZ-00025712-CUZK_WMTS-GOOGLE-MD_KM
    Explore at:
    Dataset updated
    Sep 19, 2025
    Dataset authored and provided by
    Czech Office for Surveying, Mapping and Cadastre
    License

    https://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspxhttps://www.cuzk.gov.cz/Predpisy/Podminky-poskytovani-prostor-dat-a-sitovych-sluzeb/Podminky-poskytovani-sitovych-sluzeb-CUZK.aspx

    Area covered
    Description

    Web map tile service (WMTS), which enables viewing of cadastral map both in digital and analogue form. Data are provided in a form of map tiles in WGS84/Pseudo-Mercator coordinate reference system. A Google Maps compatible scale set is used. The service fulfills the OGC WMTS 1.0.0 standard. The service is publicly available, free-of-charge and covers the whole territory of the Czech Republic. All layers except overview map are provided in levels 17 (1 : 4 265) to 25 (1 : 16).

  11. D

    Digital Map Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Digital Map Market Report [Dataset]. https://www.datainsightsmarket.com/reports/digital-map-market-12805
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing adoption of location-based services (LBS) across diverse sectors like automotive, logistics, and smart city initiatives is a primary catalyst. Furthermore, advancements in technologies such as AI, machine learning, and high-resolution satellite imagery are enabling the creation of more accurate, detailed, and feature-rich digital maps. The shift towards cloud-based deployment models offers scalability and cost-effectiveness, further accelerating market growth. While data privacy concerns and the high initial investment costs for sophisticated mapping technologies present some challenges, the overall market outlook remains overwhelmingly positive. The competitive landscape is dynamic, with established players like Google, TomTom, and ESRI vying for market share alongside innovative startups offering specialized solutions. The segmentation of the market by solution (software and services), deployment (on-premise and cloud), and industry reveals significant opportunities for growth in sectors like automotive navigation, autonomous vehicle development, and precision agriculture, where real-time, accurate mapping data is crucial. The Asia-Pacific region, driven by rapid urbanization and technological advancements in countries like China and India, is expected to witness particularly strong growth. The market's future hinges on continuous innovation. We anticipate a rise in the demand for 3D maps, real-time updates, and integration with other technologies like the Internet of Things (IoT) and augmented reality (AR). Companies are focusing on enhancing the accuracy and detail of their maps, incorporating real-time traffic data, and developing tailored solutions for specific industry needs. The increasing adoption of 5G technology promises to further boost the market by enabling faster data transmission and real-time updates crucial for applications like autonomous driving and drone delivery. The development of high-precision mapping solutions catering to specialized sectors like infrastructure management and disaster response will also fuel future growth. Ultimately, the digital map market is poised for continued expansion, driven by technological advancements and increased reliance on location-based services across a wide spectrum of industries. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Complexity in Integration of Traditional Maps with Modern GIS System. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.

  12. MOOD Maps of Google community mobility change during the COVID-19 outbreak

    • figshare.com
    xlsx
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Wint; Neil Alexander (2022). MOOD Maps of Google community mobility change during the COVID-19 outbreak [Dataset]. http://doi.org/10.6084/m9.figshare.12130980.v155
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    William Wint; Neil Alexander
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MOOD project (MOnitoring Outbreak events for Disease surveillance in a data science context. H2020) has geo-referenced the data Google has published as a series of PDF files presenting reports on national and subnational human mobility levels relative to a baseline data of late January 2020. The details and the PDF files can be found at https://www.google.com/covid19/mobility/.More detail on these files can be found at https://www.moodspatialdata.com/humanmobilityforcovid19 The first set of data were released on April 2 2020 and have been revised weekly since then. The maps now utilise the CSV data released by Google. Please note that the maps figures use a mean of the previous three days, while the Google PDFs use a single days data so there will be differences between values in our maps when compare to the Google PDFs.The authors have extracted the majority of these data into a series of excel spreadsheets. Each worksheet provides the data for % change in numbers of records at various types of location categories illustrated by: retail and recreation, grocery and pharmacy, parks and beaches, transit stations, workplaces and residential (columns f to K). A second set of columns calculates the difference of each value from the mean values for each category (columns L to P) Columns A to E contain geographical details. Column Q contains the names used to link to a mapping file.There are separate worksheets for the date of the data from each dated release (e.g. 2903, 0504 etc.) and separate worksheets calculating the changes between specific dates.A second spreadsheet has been added calculating the 3 day moving mean of each day from the 15th of February. Each day is referenced by the Gregorian calendar day count. So day 48 = Feb 17th.The maps (for EU & Global) display these data. We provide 600 dpi jpegs of the Global (“WD”) and European (“EU”) mapped values at the latest date available, for each of the mobility categories: retail and recreation (“retrec”) , grocery and pharmacy (“grocphar”) , parks (“parks”) , transit stations (“transit”), residential (“resid”) and workplaces (“work”). We also provide maps of the changes from the previous week (“ch”).All data extracting and subsequent processing have been carried out by ERGO (Environmental Research Group Oxford, c/o Dept Zoology, University of Oxford) on behalf of the MOOD H2020 project. Data will be periodically updated. Additional maps can be obtained on request to the authors.

  13. H

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • hydroshare.org
    • dataone.org
    • +1more
    zip
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2020). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    zip(2.9 MB)Available download formats
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    HydroShare
    Authors
    Sarah Beganskas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  14. d

    Map Data – Custom Google Maps Dataset with US Business Ratings, Locations &...

    • data.decanaria.com
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Canaria Inc. (2025). Map Data – Custom Google Maps Dataset with US Business Ratings, Locations & Reviews • Weekly Updated Google Data for Lead Scoring & Market Mapping [Dataset]. https://data.decanaria.com/products/canaria-google-maps-company-profile-data-30m-global-goog-canaria-inc
    Explore at:
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    Canaria Inc.
    Area covered
    Brazil, United States
    Description

    Google Data with verified US business listings from Google Maps, including locations, reviews, hours, and ratings. This Google Data is updated weekly and fully customizable — ideal for lead scoring, market mapping, location analysis, and CRM enrichment.

  15. r

    How Google Maps Reviews Impact Restaurants in New York key statistics

    • reviato.com
    Updated Oct 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). How Google Maps Reviews Impact Restaurants in New York key statistics [Dataset]. https://www.reviato.com/insights/us/new-york/new-york/restaurants/google_maps
    Explore at:
    Dataset updated
    Oct 31, 2025
    Area covered
    New York
    Variables measured
    Restaurants with 4-5 star ratings, Average review count per restaurant, Average Google Maps rating for New York restaurants, Negative reviews mentioning Surprise fees and steep pricing (automatic gratuity, card surcharges, tourist-trap menu costs)
    Description

    We analyzed 100 New York restaurants on Google Maps to show how reviews affect revenue and ratings, with data-backed steps for quick wins so busy teams act fast.

  16. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. d

    GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-map-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Thailand, Morocco, Oman, Egypt, India, United Arab Emirates, Kenya, Malaysia, Hong Kong, United States of America
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live Map Data include:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  18. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, San Miguel Island
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  19. UNESCO Cultural Heritage 3D Building Dataset

    • figshare.com
    zip
    Updated Aug 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yajing Wu (2025). UNESCO Cultural Heritage 3D Building Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.28912334.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 6, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Yajing Wu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Building footprint and height data were obtained from the latest global 3D building database. The building footprint data originated from Microsoft and Google datasets. Building height information was estimated using an XGBoost machine learning regression model that integrates multi-source remote sensing features. The height estimation model was trained using datasets from ONEGEO Map, Microsoft, Baidu, and EMU Analytics, utilizing 2020 data for the final estimations. Validation of this database demonstrates that the height estimation models perform exceptionally well at a global scale across both the Northern and Southern Hemispheres. The estimated heights closely match reference height data, especially for landmark buildings, showcasing superior accuracy compared to other global height products. The 3D building data that support this dataset are available in Zenodo DOI:10.5194/essd-16-5357-2024 (Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., and Dai, Y. 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth System Science Data)Based on the 3D building database, we verify the locations and boundaries of individual cultural heritage sites and their buffer zones using UNESCO's heritage map platform (https://whc.unesco.org/), and categorize heritage into three groups for data extraction:Broad Scale Sites: For sites encompassing continuous building clusters or portions of cities (e.g., City of Bath), we extract buildings within the designated buffer zones provided by the UNESCO platform.Single Building Sites: For individual monuments or structures (e.g., Tower of London), we precisely extract the building footprints based on their exact coordinates.Multiple Dispersed Buildings: For sites consisting of multiple, non-contiguous structures (e.g., Wooden Churches of Southern Małopolska, Poland), we identify each location using the platform’s data and verify them through Google Maps before extracting the relevant buildings.A few linear heritage sites, such as extensive archaeological routes spanning over a thousand kilometers, are excluded due to the complexities associated with their vast spatial extent and the variability of climate conditions across different segments.The effective data coverage varies across continents: Europe and North America have an effective rate of 82.5%, Asia and the Pacific 68.3%, Latin America and the Caribbean 75.7%, Arab States 76.5%, and Africa 49.2%. This variability reflects differences in data availability. In less developed regions, remote sensing data tends to overlook non-urban heritage sites, and soil and rock structures common in Africa and Southeast Asia are more difficult to detect using satellite remote sensing techniques, leading to lower effective data coverage in these regions.This dataset accompanies the following published article:Chen, Zihua, Gao, Qian, Wu, Yajing, Li, Jiaxin, Li, Xiaowei, Li, Xiao, Wang, Zhenbo, & Cui, Haiyang (2025). World Cultural Heritage sites are under climate stress and no emissions mitigation pathways can uniformly protect them. Communications Earth & Environment, 6:628. https://doi.org/10.1038/s43247-025-02603-8

  20. C

    The Psychology Behind Google Maps User Behavior in Colorado Springs

    • caseysseo.com
    application/csv, pdf
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Casey Miller (2025). The Psychology Behind Google Maps User Behavior in Colorado Springs [Dataset]. https://caseysseo.com/the-psychology-behind-google-maps-user-behavior-in-colorado-springs
    Explore at:
    pdf, application/csvAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    Casey's SEO
    Authors
    Casey Miller
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2020 - 2025
    Area covered
    Pikes Peak, Colorado Springs, El Paso County
    Variables measured
    Mobile Search Queries, Google Maps Engagement Rate, Local Service Ad Performance, Review Sentiment Improvement, Mobile Search Conversion Rate, Google Maps Photo Optimization
    Measurement technique
    Extensive customer surveys and user interviews to gather qualitative insights into the cognitive factors that influence Google Maps usage and local search behavior in the Colorado Springs market., Competitive benchmarking and industry trend analysis to contextualize the psychological findings and understand how they align with broader local search and consumer psychology trends., Comprehensive analysis of user behavior data from Google Analytics, Google My Business, and other tracking platforms to identify key psychological triggers and decision-making patterns.
    Description

    This dataset provides a comprehensive analysis of the psychological factors and behavioral patterns that influence how Google Maps users in Colorado Springs make decisions and engage with local businesses. The dataset includes detailed insights into the cognitive triggers, decision-making processes, and psychological optimization strategies that can be applied to improve the performance of Google Maps listings and enhance local search visibility.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
Organization logo

Average data use of leading navigation apps in the U.S. 2020

Explore at:
Dataset updated
Oct 15, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Oct 2020
Area covered
United States
Description

As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

Search
Clear search
Close search
Google apps
Main menu