100+ datasets found
  1. Average data use of leading navigation apps in the U.S. 2020

    • statista.com
    Updated Oct 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
    Explore at:
    Dataset updated
    Oct 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2020
    Area covered
    United States
    Description

    As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

  2. Google Maps Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Google Maps Dataset [Dataset]. https://brightdata.com/products/datasets/google-maps
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jan 8, 2023
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.

  3. Most popular navigation apps in the U.S. 2023, by downloads

    • statista.com
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular navigation apps in the U.S. 2023, by downloads [Dataset]. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
    Explore at:
    Dataset updated
    Feb 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.

    Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.

    Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.

  4. 🌎 Location Intelligence Data | From Google Map

    • kaggle.com
    zip
    Updated Apr 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azhar Saleem (2024). 🌎 Location Intelligence Data | From Google Map [Dataset]. https://www.kaggle.com/datasets/azharsaleem/location-intelligence-data-from-google-map
    Explore at:
    zip(1911275 bytes)Available download formats
    Dataset updated
    Apr 21, 2024
    Authors
    Azhar Saleem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    👨‍💻 Author: Azhar Saleem

    "https://github.com/azharsaleem18" target="_blank"> https://img.shields.io/badge/GitHub-Profile-blue?style=for-the-badge&logo=github" alt="GitHub Profile"> "https://www.kaggle.com/azharsaleem" target="_blank"> https://img.shields.io/badge/Kaggle-Profile-blue?style=for-the-badge&logo=kaggle" alt="Kaggle Profile"> "https://www.linkedin.com/in/azhar-saleem/" target="_blank"> https://img.shields.io/badge/LinkedIn-Profile-blue?style=for-the-badge&logo=linkedin" alt="LinkedIn Profile">
    "https://www.youtube.com/@AzharSaleem19" target="_blank"> https://img.shields.io/badge/YouTube-Profile-red?style=for-the-badge&logo=youtube" alt="YouTube Profile"> "https://www.facebook.com/azhar.saleem1472/" target="_blank"> https://img.shields.io/badge/Facebook-Profile-blue?style=for-the-badge&logo=facebook" alt="Facebook Profile"> "https://www.tiktok.com/@azhar_saleem18" target="_blank"> https://img.shields.io/badge/TikTok-Profile-blue?style=for-the-badge&logo=tiktok" alt="TikTok Profile">
    "https://twitter.com/azhar_saleem18" target="_blank"> https://img.shields.io/badge/Twitter-Profile-blue?style=for-the-badge&logo=twitter" alt="Twitter Profile"> "https://www.instagram.com/azhar_saleem18/" target="_blank"> https://img.shields.io/badge/Instagram-Profile-blue?style=for-the-badge&logo=instagram" alt="Instagram Profile"> "mailto:azharsaleem6@gmail.com"> https://img.shields.io/badge/Email-Contact%20Me-red?style=for-the-badge&logo=gmail" alt="Email Contact">

    Dataset Overview

    Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.

    Key Features

    • Business Details: Includes unique identifiers, names, and contact information.
    • Geolocation Data: Precise latitude and longitude for pinpointing business locations on a map.
    • Operational Timings: Detailed opening and closing hours for each day of the week, allowing analysis of business activity patterns.
    • Customer Engagement: Data on review counts and ratings, offering insights into customer satisfaction and business popularity.
    • Additional Attributes: Links to business websites, time zone information, and country-specific details enrich the dataset for comprehensive analysis.

    Potential Use Cases

    This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.

    Dataset Structure

    The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:

    • business_id: A unique Google Places identifier for each business, ensuring distinct entries.
    • phone_number: The contact number associated with the business. It provides a direct means of communication.
    • name: The official name of the business as listed on Google Maps.
    • full_address: The complete postal address of the business, including locality and geographic details.
    • latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.
    • longitude: The geographic longitude coordinate of the business location.
    • review_count: The total number of reviews the business has received on Google Maps.
    • rating: The average user rating out of 5 for the business, reflecting customer satisfaction.
    • timezone: The world timezone the business is located in, important for temporal analysis.
    • website: The official website URL of the business, providing further information and contact options.
    • category: The category or type of service the business provides, such as restaurant, museum, etc.
    • claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.
    • plus_code: A sho...
  5. d

    GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). GapMaps Live Location Intelligence Platform | Map Data | Easy-to-use| One Login for Global access [Dataset]. https://datarade.ai/data-products/gapmaps-live-location-intelligence-platform-map-data-easy-gapmaps
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Oman, Egypt, Morocco, Kenya, Thailand, India, United Arab Emirates, Malaysia, Hong Kong, United States of America
    Description

    GapMaps Live is an easy-to-use location intelligence platform available across 25 countries globally that allows you to visualise your own store data, combined with the latest demographic, economic and population movement intel right down to the micro level so you can make faster, smarter and surer decisions when planning your network growth strategy.

    With one single login, you can access the latest estimates on resident and worker populations, census metrics (eg. age, income, ethnicity), consuming class, retail spend insights and point-of-interest data across a range of categories including fast food, cafe, fitness, supermarket/grocery and more.

    Some of the world's biggest brands including McDonalds, Subway, Burger King, Anytime Fitness and Dominos use GapMaps Live Map Data as a vital strategic tool where business success relies on up-to-date, easy to understand, location intel that can power business case validation and drive rapid decision making.

    Primary Use Cases for GapMaps Live Map Data include:

    1. Retail Site Selection - Identify optimal locations for future expansion and benchmark performance across existing locations.
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers and where to find more of them.
    3. Analyse your catchment areas at a granular grid levels using all the key metrics
    4. Target Marketing: Develop effective marketing strategies to acquire more customers.
    5. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)
    6. Customer Profiling
    7. Target Marketing
    8. Market Share Analysis

    Some of features our clients love about GapMaps Live Map Data include: - View business locations, competitor locations, demographic, economic and social data around your business or selected location - Understand consumer visitation patterns (“where from” and “where to”), frequency of visits, dwell time of visits, profiles of consumers and much more. - Save searched locations and drop pins - Turn on/off all location listings by category - View and filter data by metadata tags, for example hours of operation, contact details, services provided - Combine public data in GapMaps with views of private data Layers - View data in layers to understand impact of different data Sources - Share maps with teams - Generate demographic reports and comparative analyses on different locations based on drive time, walk time or radius. - Access multiple countries and brands with a single logon - Access multiple brands under a parent login - Capture field data such as photos, notes and documents using GapMaps Connect and integrate with GapMaps Live to get detailed insights on existing and proposed store locations.

  6. d

    Outscraper Google Maps Scraper

    • datarade.ai
    .json, .csv, .xls
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Outscraper Google Maps Scraper [Dataset]. https://datarade.ai/data-products/outscraper-google-maps-scraper-outscraper
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Dec 9, 2021
    Area covered
    United States
    Description

    Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.

    Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.

    Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.

    By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.

    In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.

    https://outscraper.com/google-maps-scraper/

    As a result of the Google Maps scraping, your data file will contain the following details:

    Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID

    If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.

    Domain Contact Scraper can scrape these details:

    Email Facebook Github Instagram Linkedin Phone Twitter Youtube

  7. a

    MAP for website - Satellite Maps Western Hemisphere

    • noaa.hub.arcgis.com
    Updated Aug 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2023). MAP for website - Satellite Maps Western Hemisphere [Dataset]. https://noaa.hub.arcgis.com/maps/4406a7daa7b94b5f8c8364f7f2dc9bf2
    Explore at:
    Dataset updated
    Aug 4, 2023
    Dataset authored and provided by
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the Maps​What does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.What does the Time Slider icon do?The Time Slider widget enables you to view temporal layers in a map, and play the animation to see how the data changes over time. Using this widget, you can control the animation of the data with buttons to play and pause, go to the previous time period, and go to the next time period.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?In this map you are seeing the past 24 hours (updated approximately every 10 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-18) satellites. In this map you can also view four different ‘layers’. The views show ‘GeoColor’, ‘infrared’, and ‘water vapor’.This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in real time. Water vapor imagery, which is useful for determining locations of moisture and atmospheric circulations, is created using a wavelength of energy sensitive to the content of water vapor in the atmosphere. In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate little or no moisture present. This imagery is derived from band #10 on the GOES East and GOES West Advanced Baseline Imager.What do the colors on the water vapor map represent?In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate less moisture present. Learn more about this water vapor imagery.About the satellitesWhat are the GOES satellites?NOAA’s most sophisticated Geostationary Operational Environmental Satellites (GOES), known as the GOES-R Series, provide advanced imagery and atmospheric measurements of Earth’s Western Hemisphere, real-time mapping of lightning activity, and improved monitoring of solar activity and space weather.The first satellite in the series, GOES-R, now known as GOES-16, was launched in 2016 and is currently operational as NOAA’s GOES East satellite. In 2018, NOAA launched another satellite in the series, GOES-T, which joined GOES-16 in orbit as GOES-18. GOES-17 became operational as GOES West in January 2023.Together, GOES East and GOES West provide coverage of the Western Hemisphere and most of the Pacific Ocean, from the west coast of Africa all the way to New Zealand. Each satellite orbits the Earth from about 22,200 miles away.

  8. d

    POI Database Worldwide Coverage | Outscraper

    • datarade.ai
    .json, .csv, .xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). POI Database Worldwide Coverage | Outscraper [Dataset]. https://datarade.ai/data-products/outscraper-poi-database-worldwide-coverage-outscraper
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Area covered
    Lebanon, Svalbard and Jan Mayen, Kiribati, Turks and Caicos Islands, Niger, Sao Tome and Principe, United Arab Emirates, United Kingdom, Zimbabwe, Barbados
    Description

    Outscraper's Location Intelligence Service is a powerful and innovative tool that harnesses the rich data available from Google Maps to provide valuable Point of Interest (POI) data for businesses. This service is an excellent solution for local intelligence needs, using advanced technology to efficiently gather and analyze data from Google Maps, creating precise and relevant POI datasets​.

    This Location Intelligence Service is backed by reliable and up-to-date data, thanks to Outscraper's advanced web scraping technology. This ensures that the data extracted from Google Maps is both accurate and fresh, providing a dependable source of data for your business operations and strategic planning​.

    A key feature of Outscraper's Location Intelligence Service is its advanced filtering capabilities, enabling you to retrieve only the POI data you require. This means you can target specific categories, locations, and other criteria to get the most relevant and valuable data for your business needs, eliminating the need to sift through irrelevant records​.

    With Outscraper, you also get worldwide coverage for your POI data needs. The service's advanced data scraping technology allows you to collect data from any country and city without limitations, making it an invaluable tool for businesses with global operations or those seeking to expand internationally​.

    Outscraper provides a vast amount of data, offering the largest number of fields available to compile and enrich your POI data. With more than 40 data fields, you can create comprehensive and detailed datasets that provide deep insights into your areas of interest​.

    Outscraper's Location Intelligence Service is designed to be user-friendly, even for those without coding skills. Creating a Google Maps scraping task is quick and simple with the Outscraper App Dashboard, where you select a few parameters like category, location, limits, language, and file extension to scrape data from Google Maps​.

    Outscraper also offers API support, providing a fast and easy way to fetch Google Maps results in real-time. This feature is ideal for businesses that need to access location data quickly and efficiently​.

  9. S

    Google Usage Statistics 2025: Key Trends and Data Insights

    • sqmagazine.co.uk
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SQ Magazine (2025). Google Usage Statistics 2025: Key Trends and Data Insights [Dataset]. https://sqmagazine.co.uk/google-usage-statistics/
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    SQ Magazine
    License

    https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/

    Time period covered
    Jan 1, 2024 - Dec 31, 2025
    Area covered
    Global
    Description

    It starts with a simple habit: you open your browser and type a question. A few keystrokes later, Google gives you answers, videos, maps, and suggestions before you even finish your thought. For billions of people around the world, this daily interaction is second nature. But behind that blinking cursor...

  10. MOOD Maps of Google community mobility change during the COVID-19 outbreak

    • figshare.com
    xlsx
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William Wint; Neil Alexander (2022). MOOD Maps of Google community mobility change during the COVID-19 outbreak [Dataset]. http://doi.org/10.6084/m9.figshare.12130980.v155
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    William Wint; Neil Alexander
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MOOD project (MOnitoring Outbreak events for Disease surveillance in a data science context. H2020) has geo-referenced the data Google has published as a series of PDF files presenting reports on national and subnational human mobility levels relative to a baseline data of late January 2020. The details and the PDF files can be found at https://www.google.com/covid19/mobility/.More detail on these files can be found at https://www.moodspatialdata.com/humanmobilityforcovid19 The first set of data were released on April 2 2020 and have been revised weekly since then. The maps now utilise the CSV data released by Google. Please note that the maps figures use a mean of the previous three days, while the Google PDFs use a single days data so there will be differences between values in our maps when compare to the Google PDFs.The authors have extracted the majority of these data into a series of excel spreadsheets. Each worksheet provides the data for % change in numbers of records at various types of location categories illustrated by: retail and recreation, grocery and pharmacy, parks and beaches, transit stations, workplaces and residential (columns f to K). A second set of columns calculates the difference of each value from the mean values for each category (columns L to P) Columns A to E contain geographical details. Column Q contains the names used to link to a mapping file.There are separate worksheets for the date of the data from each dated release (e.g. 2903, 0504 etc.) and separate worksheets calculating the changes between specific dates.A second spreadsheet has been added calculating the 3 day moving mean of each day from the 15th of February. Each day is referenced by the Gregorian calendar day count. So day 48 = Feb 17th.The maps (for EU & Global) display these data. We provide 600 dpi jpegs of the Global (“WD”) and European (“EU”) mapped values at the latest date available, for each of the mobility categories: retail and recreation (“retrec”) , grocery and pharmacy (“grocphar”) , parks (“parks”) , transit stations (“transit”), residential (“resid”) and workplaces (“work”). We also provide maps of the changes from the previous week (“ch”).All data extracting and subsequent processing have been carried out by ERGO (Environmental Research Group Oxford, c/o Dept Zoology, University of Oxford) on behalf of the MOOD H2020 project. Data will be periodically updated. Additional maps can be obtained on request to the authors.

  11. D

    Digital Map Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Digital Map Market Report [Dataset]. https://www.datainsightsmarket.com/reports/digital-map-market-12805
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing adoption of location-based services (LBS) across diverse sectors like automotive, logistics, and smart city initiatives is a primary catalyst. Furthermore, advancements in technologies such as AI, machine learning, and high-resolution satellite imagery are enabling the creation of more accurate, detailed, and feature-rich digital maps. The shift towards cloud-based deployment models offers scalability and cost-effectiveness, further accelerating market growth. While data privacy concerns and the high initial investment costs for sophisticated mapping technologies present some challenges, the overall market outlook remains overwhelmingly positive. The competitive landscape is dynamic, with established players like Google, TomTom, and ESRI vying for market share alongside innovative startups offering specialized solutions. The segmentation of the market by solution (software and services), deployment (on-premise and cloud), and industry reveals significant opportunities for growth in sectors like automotive navigation, autonomous vehicle development, and precision agriculture, where real-time, accurate mapping data is crucial. The Asia-Pacific region, driven by rapid urbanization and technological advancements in countries like China and India, is expected to witness particularly strong growth. The market's future hinges on continuous innovation. We anticipate a rise in the demand for 3D maps, real-time updates, and integration with other technologies like the Internet of Things (IoT) and augmented reality (AR). Companies are focusing on enhancing the accuracy and detail of their maps, incorporating real-time traffic data, and developing tailored solutions for specific industry needs. The increasing adoption of 5G technology promises to further boost the market by enabling faster data transmission and real-time updates crucial for applications like autonomous driving and drone delivery. The development of high-precision mapping solutions catering to specialized sectors like infrastructure management and disaster response will also fuel future growth. Ultimately, the digital map market is poised for continued expansion, driven by technological advancements and increased reliance on location-based services across a wide spectrum of industries. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Complexity in Integration of Traditional Maps with Modern GIS System. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.

  12. Intermediate point data (Taxi trip duration)

    • kaggle.com
    zip
    Updated Jul 30, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soumitra Agarwal (2017). Intermediate point data (Taxi trip duration) [Dataset]. https://www.kaggle.com/artimous/intermediate-point-data-taxi-trip-duration
    Explore at:
    zip(319229 bytes)Available download formats
    Dataset updated
    Jul 30, 2017
    Authors
    Soumitra Agarwal
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    Realising which routes a taxi takes while going from one location to another gives us deep insights into why some trips take longer than others. Also, most taxis rely on navigation from Google Maps, which reinforces the use case of this dataset. On a deeper look, we can begin to analyse patches of slow traffic and number of steps during the trip (explained below).

    http://www.thethinkingstick.com/images/2015/03/vpq.gif" alt="enter image description here">

    Content

    The data, as we see it contains the following columns :

    • trip_id, pickup_latitude, pickup_longitude (and equivalents with dropoff) are picked up from the original dataset.
    • distance : Estimates the distance between the start and the end latitude, in miles.
    • start_address and end_address are directly picked up from the Google Maps API
    • params : Details set of parameters, flattened out into a single line. (Explained below)

    Parameters

    The parameters field is a long string of a flattened out JSON object. At its very basic, the field has space separated steps. The syntax is as follows :

    Step1:{ ... }, Step2:{ ...

    Each step denotes the presence of an intermediate point.

    Inside the curly braces of each of the steps we have the distance for that step measured in ft, and the start and end location. The start and end location are surrounded by round braces and are in the following format :

    Step1:{distance=X ft/mi start_location=(latitude, longitude) end_location ...}, ...

    One can split the internal params over space to get all the required values.

    Acknowledgements

    All the credit for the data goes to the Google Maps API, though limited to 2000 queries per day. I believe that even that limited amount would help us gain great insights.

    Future prospects

    • More data : Since the number of rows processed are just 2000, with a good response we might be able to get more. If you feel like contributing, please have a look at the script here and try and run in for the next 2000 rows.

    • Driver instructions : I did not include the driver instruction column in the data from the google API as it seemed to complex to use in any kind of models. If that is not the general opinion, I can add it here.

  13. d

    Data from: California State Waters Map Series--Monterey Canyon and Vicinity...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). California State Waters Map Series--Monterey Canyon and Vicinity Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-monterey-canyon-and-vicinity-web-services
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Monterey County, Monterey Canyon, California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Monterey Canyon and Vicinity map area data layers. Data layers are symbolized as shown on the associated map sheets.

  14. H

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • hydroshare.org
    • dataone.org
    • +1more
    zip
    Updated Jul 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2020). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    zip(2.9 MB)Available download formats
    Dataset updated
    Jul 31, 2020
    Dataset provided by
    HydroShare
    Authors
    Sarah Beganskas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  15. Google Maps Restaurant Reviews

    • kaggle.com
    zip
    Updated Aug 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deniz Bilgin (2023). Google Maps Restaurant Reviews [Dataset]. https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews
    Explore at:
    zip(688734651 bytes)Available download formats
    Dataset updated
    Aug 19, 2023
    Authors
    Deniz Bilgin
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Data includes reviews of different restaurants on Google Maps. There are 1100 comments in total and pictures of each comment in the data set. The data is labeled according to 4 classes (Taste, Menu, Indoor atmosphere, Outdoor atmosphere) for the artificial intelligence to predict. The dataset has been prepared in a way that can be used in both text processing and image processing fields.

    The dataset contains the following columns: business_name, author_name, text, photo, rating, rating_category

    IMPORTANT: The rating_category column is related to the photo of the review. If you want to use this dataset for NLP, you need to label it yourself. I will label it for you when I am available.

  16. c

    Global Digital Map Market Report 2025 Edition, Market Size, Share, CAGR,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Global Digital Map Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/digital-map-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global Digital Maps market size was USD XX million in 2023 and will expand at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.

    The global Digital Maps market will expand significantly by XX% CAGR between 2024 to 2031.
    
    
    North America held the major market of more than XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
    
    
    Europe accounted for a share of over XX% of the global market size of USD XX million.
    
    
    Asia Pacific held a market of around XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
    
    
    Latin America's market will have more than XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
    
    
    Middle East and Africa held the major market of around XX% of the global revenue with a market size of USD XX million in 2023 and will grow at a compound annual growth rate (CAGR) of XX% from 2024 to 2031.
    
    
    The Tracking and Telematics segment is set to rise GPS tracking enables fleet managers to monitor their cars around the clock, avoiding expensive problems like speeding and other careless driving behaviors like abrupt acceleration. 
    
    
    The digital maps market is driven by mobile computing devices that are increasingly used for navigation, and the increased usage of geographic data.
    
    
    The retail and real estate segment held the highest Digital Maps market revenue share in 2023.
    

    Market Dynamics of Digital Maps:

    Key drivers of the Digital Maps Market

    Mobile Computing Devices Are Increasingly Used for Navigation leading to market expansion-
    

    Since technology is changing rapidly, two categories of mobile computing devices—tablets and smartphones—are developing and becoming more diverse. One of the newest features accessible in this category is map software, which is now frequently preinstalled on smartphones. Meitrack Group launched the MD500S, a four-channel AI mobile DVR, for the first time in 2022. The MD500S is a 4-channel MDVR with excellent stability that supports DMS, GNSS tracking, video recording, and ADAS. Source- https://www.meitrack.com/ai-mobile-dvr/#:~:text=Mini%204CH%20AI%20Mobile%20DVR,surveillance%20solutions%20that%20uses%20H.

    It's no secret that people who own smartphones routinely use built-in mapping apps to find directions and other driving assistance. Furthermore, these individuals use georeferenced data from GPS and GIS apps to find nearby establishments such as cafes, movie theatres, and other sites of interest. Mobile computing devices are now commonly used to acquire accurate 3D spatial information. A personal digital assistant (PDA) is a software agent that uses information from the user's computer, location, and various web sources to accomplish tasks or offer services. Thus, mobile computing devices are increasingly used for navigation leading to market expansion.

    The usage of geographic data has increased leading to market expansion-
    

    Since it is used in so many different industries and businesses—including risk and emergency management, infrastructure management, marketing, urban planning, resource management (oil, gas, mining, and other resources), business planning, logistics, and more—geospatial information has seen a boom in recent years. Since location is one of the essential components of context, geo-information also serves as a basis for applications in the future. For example, Atos SE provides services to companies in supply chain management, data centers, infrastructure development, urban planning, risk and emergency management, navigation, and healthcare by utilizing geographic information system (GIS) platforms with location-based services (LBS).

    Furthermore, augmented reality-based technologies make use of 3D platforms and GIS data to offer virtual information about people and their environment. Businesses can offer users customized ads by using this information to better understand their needs.Thus, the usage of geographic data has increased leading to market expansion.

    Restraints of the Digital Maps Market

    Lack of knowledgeable and skilled technicia...
    
  17. Community Map

    • noveladata.com
    • data.baltimorecity.gov
    • +11more
    Updated Feb 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Community Map [Dataset]. https://www.noveladata.com/maps/esri::community-map/about
    Explore at:
    Dataset updated
    Feb 16, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Community Map (World Edition) web map provides a customized world basemap that is uniquely symbolized and optimized to display special areas of interest (AOIs) that have been created and edited by Community Maps contributors. These special areas of interest include landscaping features such as grass, trees, and sports amenities like tennis courts, football and baseball field lines, and more. This basemap, included in the ArcGIS Living Atlas of the World, uses the Community vector tile layer. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layer items referenced in this map.

  18. Geospatial data for the Vegetation Mapping Inventory Project of Petersburg...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Geospatial data for the Vegetation Mapping Inventory Project of Petersburg National Battlefield [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-petersburg-national-battle
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Petersburg
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Petersburg National Battlefield to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system. Each polygon on the Petersburg National Battlefield map was assigned to one of twenty map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained from Petersburg National Battlefield in May 2006. Spatial data depicting the locations of earthworks was obtained from the park and used to identify polygons of the cultural map classes Open Earthworks and Forested Earthworks. One map class used to attribute polygons combines two similar associations that, in some circumstances, are difficult to distinguish in the field. The vegetation map was clipped at the park boundary because areas outside the park were not surveyed or included in the accuracy assessment. Twenty map classes were used in the vegetation map for Petersburg National Battlefield. Map classes are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system.

  19. Human Geography Map

    • digital-earth-pacificcore.hub.arcgis.com
    • pacificgeoportal.com
    • +19more
    Updated Feb 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). Human Geography Map [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/maps/3582b744bba84668b52a16b0b6942544
    Explore at:
    Dataset updated
    Feb 2, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.

  20. p

    Data from: World Terrestrial Ecosystems

    • pacificgeoportal.com
    • cacgeoportal.com
    • +4more
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). World Terrestrial Ecosystems [Dataset]. https://www.pacificgeoportal.com/datasets/926a206393ec40a590d8caf29ae9a93e
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset authored and provided by
    Esri
    Area covered
    World,
    Description

    The World Terrestrial Ecosystems map classifies the world into areas of similar climate, landform, and land cover, which form the basic components of any terrestrial ecosystem structure. This map is important because it uses objectively derived and globally consistent data to characterize the ecosystems at a much finer spatial resolution (250-m) than existing ecoregionalizations, and a much finer thematic resolution (431 classes) than existing global land cover products. This item was updated on Apr 14, 2023 to distinguish between Boreal and Polar climate regions in the terrestrial ecosystems. Cell Size: 250-meter Source Type: ThematicPixel Type: 16 Bit UnsignedData Projection: GCS WGS84Extent: GlobalSource: USGS, The Nature Conservancy, EsriUpdate Cycle: NoneAnalysis: Optimized for analysis What can you do with this layer?This map allows you to query the land surface pixels and returns the values of all the input parameters (landform type, landcover/vegetation type, climate region) and the name of the terrestrial ecosystem at that location. This layer can be used in analysis at global and local regions. However, for large scale spatial analysis, we have also provided an ArcGIS Pro Package that contains the original raster data with multiple table attributes. For simple mapping applications, there is also a raster tile layer. This layer can be combined with the World Protected Areas Database to assess the types of ecosystems that are protected, and progress towards meeting conservation goals. The WDPA layer updates monthly from the United Nations Environment Programme. Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See the Living Atlas Imagery Layers Optimized for Analysis Group for a complete list of imagery layers optimized for analysis. Developing the World Terrestrial EcosystemsWorld Terrestrial Ecosystems map was produced by adopting and modifying the Intergovernmental Panel on Climate Change (IPCC) approach on the definition of Terrestrial Ecosystems and development of standardized global climate regions using the values of environmental moisture regime and temperature regime. We then combined the values of Global Climate Regions, Landforms and matrix-forming vegetation assemblage or land use, using the ArcGIS Combine tool (Spatial Analyst) to produce World Ecosystems Dataset. This combination resulted of 431 World Ecosystems classes. Each combination was assigned a color using an algorithm that blended traditional color schemes for each of the three components. Every pixel in this map is symbolized by a combination of values for each of these fields. The work from this collaboration is documented in the publication:Sayre et al. 2020. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems - Global Ecology and Conservation More information about World Terrestrial Ecosystems can be found in this Story Map.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2020). Average data use of leading navigation apps in the U.S. 2020 [Dataset]. https://www.statista.com/statistics/1186009/data-use-leading-us-navigation-apps/
Organization logo

Average data use of leading navigation apps in the U.S. 2020

Explore at:
Dataset updated
Oct 15, 2020
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Oct 2020
Area covered
United States
Description

As of October 2020, the average amount of mobile data used by Apple Maps per 20 minutes was 1.83 MB, while Google maps used only 0.73 MB. Waze, which is also owned by Google, used the least amount at 0.23 MB per 20 minutes.

Search
Clear search
Close search
Google apps
Main menu