25 datasets found
  1. Insightful & Vast USA Statistics

    • kaggle.com
    Updated May 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Golden Oak Research Group (2018). Insightful & Vast USA Statistics [Dataset]. https://www.kaggle.com/forums/f/6032/insightful-vast-usa-statistics
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2018
    Dataset provided by
    Kaggle
    Authors
    Golden Oak Research Group
    Area covered
    United States
    Description

    Very Important

    • Check out the new must-see kernel for this dataset Click Here
    • Make Sure to upvote for more datasets and kernel :D

    Overview:

    Explore the dataset and potentially gain valuable insight into your data science project through interesting features. The dataset was developed for a portfolio optimization graduate project I was working on. The goal was to the monetize risk of company deleveraging by associated with changes in economic data. Applications of the dataset may include. To see the data in action visit my analytics page. Analytics Page & Dashboard and to access all 295,000+ records click here.

    • Mortgage-Backed Securities
    • Geographic Business Investment
    • Real Estate Analysis

    For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965. Please Note: the number is my personal number and email is preferred

    Statistical Themes:

    Note: in total there are 75 fields the following are just themes the fields fall under Home Owner Costs: Sum of utilities, property taxes.

    • Second Mortgage: Households with a second mortgage statistics.
    • Home Equity Loan: Households with a Home equity Loan statistics.
    • Debt: Households with any type of debt statistics.
    • Mortgage Costs: Statistics regarding mortgage payments, home equity loans, utilities and property taxes
    • Home Owner Costs: Sum of utilities, property taxes statistics
    • Gross Rent: Contract rent plus the estimated average monthly cost of utility features
    • Gross Rent as Percent of Income Gross rent as the percent of income very interesting
    • High school Graduation: High school graduation statistics.
    • Population Demographics: Population demographic statistics.
    • Age Demographics: Age demographic statistics.
    • Household Income: Total income of people residing in the household.
    • Family Income: Total income of people related to the householder.

    Sources, if you wish to get the data your self :)

    2012-2016 ACS 5-Year Documentation was provided by the U.S. Census Reports. Retrieved May 2, 2018, from

    Access All 325,258 Location of Our Most Complete Database Ever:

    Providing you the potential to monetize risk and optimize your investment portfolio through quality economic features at unbeatable price. Access all 295,000+ records on an incredibly small scale, see links below for more details:

  2. Family Resources Survey, 2022-2023

    • beta.ukdataservice.ac.uk
    • datacatalogue.cessda.eu
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department For Work And Pensions (2025). Family Resources Survey, 2022-2023 [Dataset]. http://doi.org/10.5255/ukda-sn-9252-2
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Department For Work And Pensions
    Description

    The Family Resources Survey (FRS) has been running continuously since 1992 to meet the information needs of the Department for Work and Pensions (DWP). It is almost wholly funded by DWP.

    The FRS collects information from a large, and representative sample of private households in the United Kingdom (prior to 2002, it covered Great Britain only). The interview year runs from April to March.

    The focus of the survey is on income, and how much comes from the many possible sources (such as employee earnings, self-employed earnings or profits from businesses, and dividends; individual pensions; state benefits, including Universal Credit and the State Pension; and other sources such as savings and investments). Specific items of expenditure, such as rent or mortgage, Council Tax and water bills, are also covered.

    Many other topics are covered and the dataset has a very wide range of personal characteristics, at the adult or child, family and then household levels. These include education, caring, childcare and disability. The dataset also captures material deprivation, household food security and (new for 2021/22) household food bank usage.

    The FRS is a national statistic whose results are published on the gov.uk website. It is also possible to create your own tables from FRS data, using DWP’s Stat Xplore tool. Further information can be found on the gov.uk Family Resources Survey webpage.

    Secure Access FRS data
    In addition to the standard End User Licence (EUL) version, Secure Access datasets, containing unrounded data and additional variables, are also available for FRS from 2005/06 onwards - see SN 9256. Prospective users of the Secure Access version of the FRS will need to fulfil additional requirements beyond those associated with the EUL datasets. Full details of the application requirements are available from http://ukdataservice.ac.uk/media/178323/secure_frs_application_guidance.pdf" style="background-color: rgb(255, 255, 255);">Guidance on applying for the Family Resources Survey: Secure Access.

    FRS, HBAI and PI
    The FRS underpins the related Households Below Average Income (HBAI) dataset, which focuses on poverty in the UK, and the related Pensioners' Incomes (PI) dataset. The EUL versions of HBAI and PI are held under SNs 5828 and 8503, respectively. The Secure Access versions are held under SN 7196 and 9257 (see above).

    FRS 2022-23

    The impact of the coronavirus (COVID-19) pandemic on the FRS 2022-23 survey was much reduced when compared with the two previous survey years. Throughout the year, there was a gradual return to pre-pandemic fieldwork practices, with the majority of interviews being conducted in face-to-face mode. The achieved sample was just over 25,000 households. Users are advised to consult the FRS 2022-23 Background Information and Methodology document for detailed information on changes, developments and issues related to the 2022-23 FRS data set and publication. Alongside the usual topics covered, the 2022-2023 FRS also includes variables for Cost of Living support, including those on certain state benefits; energy bill support; and Council Tax support. See documentation for further details.

    FRS 2021-22 and 2020-21 and the coronavirus (COVID-19) pandemic

    The coronavirus (COVID-19) pandemic has impacted the FRS 2021-22 and 2020-21 data collection in the following ways:

    • In 2020-21, fieldwork operations for the FRS were rapidly changed in response to the coronavirus (COVID-19) pandemic and the introduction of national lockdown restrictions. The established face-to-face interviewing approach employed on the FRS was suspended and replaced with telephone interviewing for the whole of the 2020-21 survey year.
    • This change impacted both the size and composition of the achieved sample. This shift in mode of interview has been accompanied by a substantial reduction in the number of interviews achieved: just over 10,000 interviews were achieved this year, compared with 19,000 to 20,000 in a typical FRS year. While we made every effort to address additional biases identified (e.g. by altering our weighting regime), some residual bias remains. Please see the FRS 2020-21 Background Information and Methodology document for more information.
    • The FRS team have published a technical report for the 2020-21 survey, which provides a full assessment of the impact of the pandemic on the statistics. In line with the Statistics Code of Practice, this is designed to assist users with interpreting the data and to aid transparency over decisions and data quality issues.
    • In 2021-22, the interview mode was largely telephone, with partial return to face-to-face interviews towards end of survey year. The achieved sample was over 16,000 households. This is a return towards the number expected in a normal survey year (around 20,000 households).
    • In both survey years, there remain areas where users are advised to exercise caution when making comparisons to other survey years. More details on how the results for the 2020 to 2021 and 2021-22 survey years were affected by the coronavirus (COVID-19) pandemic can be found in the FRS 2020 to 2021 Background Information and Methodology and FRS 2021 to 2022 Background Information and Methodology.

    The FRS team are seeking users' feedback on the 2020-21 and 2021-22 FRS. Given the breadth of groups covered by the FRS data, it has not been possible for DWP statisticians to assess or validate every breakdown which is of interest to external researchers and users. Therefore, the FRS team are inviting users to let them know of any insights you may have relating to data quality or trends when analysing these data for your area of interest. Please send any feedback directly to the FRS Team Inbox: team.frs@dwp.gov.uk

    Latest edition information

    For the second edition (May 2025), the data were redeposited. The following changes have been made:

    • An ONS-delivered fix to the highest level of qualification (EDUCQUAL) which for several adults had been erroneously recorded.
    • For ESA (benefit 16 on the BENEFITS table) the associated VAR3 has now been populated using ESA admin data, to show whether cases are Support Group etc.
    • For Pension Credit recipients (benefit 4 on the BENEFITS table) adding the low-income benefits and tax credits Cost of Living Payment as benefit 124; with its flag CLPAYIRB set on the ADULT table.
    Further information can be found on the Family Resources Survey - GOV.UK webpage.

  3. f

    ReferenceUSA Historical Consumer Datasets

    • arizona.figshare.com
    Updated Aug 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Arizona Libraries (2024). ReferenceUSA Historical Consumer Datasets [Dataset]. http://doi.org/10.25422/azu.data.26222102.v1
    Explore at:
    Dataset updated
    Aug 6, 2024
    Dataset provided by
    University of Arizona Research Data Repository
    Authors
    University of Arizona Libraries
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    Dataset available only to University of Arizona affiliates. To obtain access, you must log in to ReDATA with your NetID. Data is for research use by each individual downloader only. Sharing and/or redistribution of any portion of this dataset is prohibited.This ReferenceUSA dataset from Data Axle (formerly Infogroup) contains household data about US consumers in annual snapshots from 2006-2021. It includes details such as family demographics, income, home ownership status, lifestyle, location and more, which can help users to create marketing plans and conduct competitive analyses.Consumer profiles are described with 58-66 indicators. Data for all states are combined into single files for each year between 2006 and 2012 while there is a file for each state in 2013-2021. The Layout - Consumer DB Historical 2006-2012.xlsx in Documentation.zip applies to 2006-2012. Codebooks for 2013, 2014, 2015, 2017, 2018, 2019 and 2021 are not included but files in 2013-2021 have similar layouts therefore 2016 Historical Residential File Layout.xlsx and 2020 Historical Residential File Layout.xlsx in Documentation.zip apply to 2013-2021.The University of Arizona University Libraries also subscribe to Data Axle Reference Solutions which provides this data in a searchable, online database with historical data available going back to 2003.NOTE: The uncompressed datasets are very large.Detailed file descriptions and MD5 hash values for each file can be found in the README.txt file.For inquiries regarding the contents of this dataset, please contact the Corresponding Author listed in the README.txt file. Administrative inquiries (e.g., removal requests, trouble downloading, etc.) can be directed to data-management@arizona.edu

  4. u

    Income and Earnings by Tracts 2018

    • gstore.unm.edu
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Income and Earnings by Tracts 2018 [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/307efd60-d30d-4ddd-b683-8cfd1d606ecd/metadata/ISO-19115:2003.html
    Explore at:
    Dataset updated
    Mar 6, 2020
    Time period covered
    2018
    Area covered
    West Bound -109.050173 East Bound -103.001964 North Bound 37.000293 South Bound 31.332172
    Description

    A broad and generalized selection of 2014-2018 US Census Bureau 2018 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of the household income, median household income by race and by age group, Social Security income, the GINI Index, per capita income, median family income, and median household earnings by age, and by education level, in New Mexico. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area. NOTE: A '-666666666' entry indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.

  5. U

    RLMS-HSE Household and Individual Data

    • dataverse.unc.edu
    • dataverse-staging.rdmc.unc.edu
    • +1more
    7z, tsv, zip
    Updated May 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNC Dataverse (2019). RLMS-HSE Household and Individual Data [Dataset]. https://dataverse.unc.edu/dataset.xhtml;jsessionid=6b3406b3965f2db5517858638168?persistentId=hdl%3A1902.29%2F11735&version=&q=&fileAccess=&fileTag=%221998+ZIPPED+Files%22&fileSortField=name&fileSortOrder=desc
    Explore at:
    zip(3272238), 7z(4201189), tsv(1041094)Available download formats
    Dataset updated
    May 21, 2019
    Dataset provided by
    UNC Dataverse
    Time period covered
    1994 - 2014
    Area covered
    Russian Federation
    Description

    The Russia Longitudinal Monitoring Survey (RLMS) is a series of nationally representative surveys designed to monitor the effects of Russian reforms on the health and economic welfare of households and individuals in the Russian Federation. These effects are measured by a variety of means: detailed monitoring of individuals' health status and dietary intake, precise measurement of household-level expenditures and service utilization, and collection of relevant community-level data, including region-specific prices and community infrastructure data. Phase II data have been collected annually (with two exceptions) since 1994. The project has been run jointly by the Carolina Population Center at the University of North Carolina at Chapel Hill, headed by Barry M. Popkin, and the Demoscope team in Russia, headed by Polina Kozyreva and Mikhail Kosolapov. Please note The sample size in 2014 was cut by about 20%, because the cost of the project increased due to inflation, but financial support remained the same. The original 1994 sample remained the same, and all cuts applied only to the part of the sample which was added in 2010. It should be stated that the implemented procedure of cutting the sample size guarantees that the smaller sample is still representative at the national level. To lower the cost it was also decided to dro p the Educational Expenses section from the HH questionnaire, which was added back in 2010. Household Data For the household interview, a single member of the household was asked questions that pertained to the entire family. The respondent was usually the oldest living woman in the home since she was available to be interviewed during the daytime. Any attempt to identify one person as the "household head" is as problematic in Russia as it is in the United States. Thus, the interviewer was instructed to speak with "the person who knows the most about this family's shop ping and health." Individual Data In theory, the individual questionnaire is administered to every person living in the household. In practice, however, some individuals, such as very young children and elderly people, did not receive an individual interview. Individual-level information is the primary source of information pertaining to a person's health, employment status, demographic characteristics, and anthropometry. It can also be used to supplement household-level income an d expenditure information. To safeguard the confidentiality of RLMS respondents, individual-level data sets omit text variables (designated char on questionnaires). Please note that almost all text variables exist in Russian only. English translations exist for only a few of these variables. Please contact us to check on the availability of English translations of specific variables of interest.

  6. Family Resources Survey, 2005/06-2023/24: Secure Access

    • datacatalogue.cessda.eu
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; NatCen Social Research (2025). Family Resources Survey, 2005/06-2023/24: Secure Access [Dataset]. http://doi.org/10.5255/UKDA-SN-9256-3
    Explore at:
    Dataset updated
    May 29, 2025
    Dataset provided by
    Department for Work and Pensionshttps://gov.uk/dwp
    Social and Vital Statistics Division
    Authors
    Office for National Statistics; NatCen Social Research
    Area covered
    United Kingdom
    Variables measured
    Families/households, Individuals, National
    Measurement technique
    Telephone interview: Computer-assisted (CATI), Face-to-face interview: Computer-assisted (CAPI/CAMI)
    Description

    Abstract copyright UK Data Service and data collection copyright owner.

    The Family Resources Survey (FRS) has been running continuously since 1992 to meet the information needs of the Department for Work and Pensions (DWP). It is almost wholly funded by DWP.

    The FRS collects information from a large, and representative sample of private households in the United Kingdom (prior to 2002, it covered Great Britain only). The interview year runs from April to March.

    The focus of the survey is on income, and how much comes from the many possible sources (such as employee earnings, self-employed earnings or profits from businesses, and dividends; individual pensions; state benefits, including Universal Credit and the State Pension; and other sources such as savings and investments). Specific items of expenditure, such as rent or mortgage, Council Tax and water bills, are also covered.

    Many other topics are covered and the dataset has a very wide range of personal characteristics, at the adult or child, family and then household levels. These include education, caring, childcare and disability. The dataset also captures material deprivation, household food security and (new for 2021/22) household food bank usage.

    The FRS is a national statistic whose results are published on the gov.uk website. It is also possible to create your own tables from FRS data, using DWP’s Stat Xplore tool. Further information can be found on the gov.uk Family Resources Survey webpage.

    Secure Access FRS data
    The Secure Access version of the FRS contains unrounded data and additional variables, and is available from 2005/06 onwards. Prospective users of the Secure Access version of the FRS must fulfil additional requirements beyond those associated with the EUL datasets.

    FRS, HBAI and PI
    The FRS underpins the related Households Below Average Income (HBAI) dataset, which focuses on poverty in the UK, and the related Pensioners' Incomes (PI) dataset. The Secure Access versions are held under SNs 7196 and 9257. The EUL versions of HBAI and PI are held under SNs 5828 and 8503.


    Secure Access FRS contents
    The Secure Access version of the FRS contains unrounded data and a small number of extra variables that are not available on the standard EUL versions. A full listing of additional variables for the current year is available in the document '9256_frs_variable_listing_saf.xlsx', and in the UKDA Data Dictionaries in the Documentation section. Users should note that the variables listed may not be included for all FRS years. The file '9252_changes_.xlsx' lists a summary of variable changes since the previous year.

    Documentation
    The Documentation section includes files for the latest year of the FRS only, due to available space. Documentation for previous years is provided alongside the data for access and is also available upon request.

    Latest edition information

    For the second edition (April 2025), data and documentation for 2023/24 were added to the study. LSOA variables for 2013/14 to 2019/20 have also been added to the household ('househol') files for those years.

    For the third edition (May 2025), the 2022/23 data files were replaced, and the Excel metadata documentation updated accordingly. The following changes have been made:

    • An ONS-delivered fix to the highest level of qualification (EDUCQUAL) which for several adults had been erroneously recorded.
    • For ESA (benefit 16 on the BENEFITS table) the associated VAR3 has now been populated using ESA admin data, to show whether cases are Support Group etc.
    • For Pension Credit recipients (benefit 4 on the BENEFITS table) adding the low-income benefits and tax credits Cost of Living Payment as benefit 124; with its flag CLPAYIRB set on the ADULT table.
    Further information can be found on the Family Resources Survey - GOV.UK webpage.
    Main Topics:

    Household characteristics (age, family composition, tenure); some spending, with housing (rent or details of mortgage); household bills including Council Tax, buildings and contents insurance, water and sewerage rates.

    Receipt of state support from all state benefits, including Universal Credit and Tax Credits; educational level and grants and loans; children in education; care, both those receiving care and those caring for others; childcare; occupation, employment, self-employment and earnings/wage details, including director dividend if received; income tax payments and refunds; National Insurance contributions; pension contributions; earnings from odd jobs. Doctors and dentists are separately identified from 2021-22.

    Health and disability, restrictions on work, children's health; income from personal or...

  7. u

    American Community Survey

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Mar 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2020). American Community Survey [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/51fe3ebc-2f4a-4e2c-88cf-d57bf8ce2ee5/metadata/FGDC-STD-001-1998.html
    Explore at:
    zip(5), gml(5), csv(5), geojson(5), json(5), shp(5), xls(5), kml(5)Available download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    2015
    Area covered
    New Mexico, West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172
    Description

    A broad and generalized selection of 2011-2015 US Census Bureau 2015 5-year American Community Survey race, ethnicity and citizenship data estimates, obtained via Census API and joined to the appropriate geometry (in this case, New Mexico Census tracts). The selection is not comprehensive, but allows a first-level characterization of the household income, median household income by race and by age group, Social Security income, the GINI Index, per capita income, median family income, and median household earnings by age, and by education level, in New Mexico. The determination of which estimates to include was based upon level of interest and providing a manageable dataset for users.The U.S. Census Bureau's American Community Survey (ACS) is a nationwide, continuous survey designed to provide communities with reliable and timely demographic, housing, social, and economic data every year. The ACS collects long-form-type information throughout the decade rather than only once every 10 years. The ACS combines population or housing data from multiple years to produce reliable numbers for small counties, neighborhoods, and other local areas. To provide information for communities each year, the ACS provides 1-, 3-, and 5-year estimates. ACS 5-year estimates (multiyear estimates) are “period” estimates that represent data collected over a 60-month period of time (as opposed to “point-in-time” estimates, such as the decennial census, that approximate the characteristics of an area on a specific date). ACS data are released in the year immediately following the year in which they are collected. ACS estimates based on data collected from 2009–2014 should not be called “2009” or “2014” estimates. Multiyear estimates should be labeled to indicate clearly the full period of time. While the ACS contains margin of error (MOE) information, this dataset does not. Those individuals requiring more complete data are directed to download the more detailed datasets from the ACS American FactFinder website. This dataset is organized by Census tract boundaries in New Mexico. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area. NOTE: A '-666666666' entry indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.

  8. ACS Median Household Income Variables - Boundaries

    • gis-fema.hub.arcgis.com
    • resilience.climate.gov
    • +8more
    Updated Oct 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS Median Household Income Variables - Boundaries [Dataset]. https://gis-fema.hub.arcgis.com/maps/45ede6d6ff7e4cbbbffa60d34227e462
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. d

    Indonesia - Family Life Survey 2000 - Dataset - waterdata

    • waterdata3.staging.derilinx.com
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Indonesia - Family Life Survey 2000 - Dataset - waterdata [Dataset]. https://waterdata3.staging.derilinx.com/dataset/indonesia-family-life-survey-2000
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    By the middle of the 1990s, Indonesia had enjoyed over three decades of remarkable social, economic, and demographic change and was on the cusp of joining the middle-income countries. Per capita income had risen more than fifteenfold since the early 1960s, from around US$50 to more than US$800. Increases in educational attainment and decreases in fertility and infant mortality over the same period reflected impressive investments in infrastructure. In the late 1990s the economic outlook began to change as Indonesia was gripped by the economic crisis that affected much of Asia. In 1998 the rupiah collapsed, the economy went into a tailspin, and gross domestic product contracted by an estimated 12-15%-a decline rivaling the magnitude of the Great Depression. The general trend of several decades of economic progress followed by a few years of economic downturn masks considerable variation across the archipelago in the degree both of economic development and of economic setbacks related to the crisis. In part this heterogeneity reflects the great cultural and ethnic diversity of Indonesia, which in turn makes it a rich laboratory for research on a number of individual- and household-level behaviors and outcomes that interest social scientists. The Indonesia Family Life Survey is designed to provide data for studying behaviors and outcomes. The survey contains a wealth of information collected at the individual and household levels, including multiple indicators of economic and non-economic well-being: consumption, income, assets, education, migration, labor market outcomes, marriage, fertility, contraceptive use, health status, use of health care and health insurance, relationships among co-resident and non- resident family members, processes underlying household decision-making, transfers among family members and participation in community activities. In addition to individual- and household-level information, the IFLS provides detailed information from the communities in which IFLS households are located and from the facilities that serve residents of those communities. These data cover aspects of the physical and social environment, infrastructure, employment opportunities, food prices, access to health and educational facilities, and the quality and prices of services available at those facilities. By linking data from IFLS households to data from their communities, users can address many important questions regarding the impact of policies on the lives of the respondents, as well as document the effects of social, economic, and environmental change on the population. The Indonesia Family Life Survey complements and extends the existing survey data available for Indonesia, and for developing countries in general, in a number of ways. First, relatively few large-scale longitudinal surveys are available for developing countries. IFLS is the only large-scale longitudinal survey available for Indonesia. Because data are available for the same individuals from multiple points in time, IFLS affords an opportunity to understand the dynamics of behavior, at the individual, household and family and community levels. In IFLS1 7,224 households were interviewed, and detailed individual-level data were collected from over 22,000 individuals. In IFLS2, 94.4% of IFLS1 households were re-contacted (interviewed or died). In IFLS3 the re-contact rate was 95.3% of IFLS1 households. Indeed nearly 91% of IFLS1 households are complete panel households in that they were interviewed in all three waves, IFLS1, 2 and 3. These re-contact rates are as high as or higher than most longitudinal surveys in the United States and Europe. High re-interview rates were obtained in part because we were committed to tracking and interviewing individuals who had moved or split off from the origin IFLS1 households. High re-interview rates contribute significantly to data quality in a longitudinal survey because they lessen the risk of bias due to nonrandom attrition in studies using the data. Second, the multipurpose nature of IFLS instruments means that the data support analyses of interrelated issues not possible with single-purpose surveys. For example, the availability of data on household consumption together with detailed individual data on labor market outcomes, health outcomes and on health program availability and quality at the community level means that one can examine the impact of income on health outcomes, but also whether health in turn affects incomes. Third, IFLS collected both current and retrospective information on most topics. With data from multiple points of time on current status and an extensive array of retrospective information about the lives of respondents, analysts can relate dynamics to events that occurred in the past. For example, changes in labor outcomes in recent years can be explored as a function of earlier decisions about schooling and work. Fourth, IFLS collected extensive measures of health status, including self-reported measures of general health status, morbidity experience, and physical assessments conducted by a nurse (height, weight, head circumference, blood pressure, pulse, waist and hip circumference, hemoglobin level, lung capacity, and time required to repeatedly rise from a sitting position). These data provide a much richer picture of health status than is typically available in household surveys. For example, the data can be used to explore relationships between socioeconomic status and an array of health outcomes. Fifth, in all waves of the survey, detailed data were collected about respondents¹ communities and public and private facilities available for their health care and schooling. The facility data can be combined with household and individual data to examine the relationship between, for example, access to health services (or changes in access) and various aspects of health care use and health status. Sixth, because the waves of IFLS span the period from several years before the economic crisis hit Indonesia, to just prior to it hitting, to one year and then three years after, extensive research can be carried out regarding the living conditions of Indonesian households during this very tumultuous period. In sum, the breadth and depth of the longitudinal information on individuals, households, communities, and facilities make IFLS data a unique resource for scholars and policymakers interested in the processes of economic development.

  10. d

    Replication Data for: The Fading American Dream: Trends in Absolute Income...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy (2023). Replication Data for: The Fading American Dream: Trends in Absolute Income Mobility Since 1940 [Dataset]. http://doi.org/10.7910/DVN/B9TEWM
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy
    Description

    This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.

  11. Households Below Average Income, 1994/95-2023/24

    • datacatalogue.cessda.eu
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Work and Pensions (2025). Households Below Average Income, 1994/95-2023/24 [Dataset]. http://doi.org/10.5255/UKDA-SN-5828-17
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Department for Work and Pensionshttps://gov.uk/dwp
    Area covered
    United Kingdom
    Variables measured
    Individuals, Families/households, National
    Measurement technique
    Compilation/Synthesis
    Description

    Abstract copyright UK Data Service and data collection copyright owner.


    The Households Below Average Income (HBAI) data presents information on living standards in the UK based on household income measures for the financial year.

    HBAI uses equivalised disposable household income as a proxy for living standards in order to allow comparisons of the living standards of different types of households (that is, income is adjusted to take into account variations in the size and composition of the households in a process known as equivalisation). A key assumption made in HBAI is that all individuals in the household benefit equally from the combined income of the household. This enables the total equivalised income of the household to be used as a proxy for the standard of living of each household member.

    In line with international best practice, the income measures used in HBAI are subject to several statistical adjustments and, as such, are not always directly relatable to income amounts as they might be understood by people on a day-to-day basis. These adjustments, however, allow consistent comparison over time and across households of different sizes and compositions. HBAI uses variants of CPI inflation when estimating how incomes are changing in real terms over time.

    The main data source used in this study is the Family Resources Survey (FRS), a continuous cross-sectional survey. The FRS normally has a sample of 19,000 - 20,000 UK households. The use of survey data means that HBAI estimates are subject to uncertainty, which can affect how changes should be interpreted, especially in the short term. Analysis of geographies below the regional level is not recommended from this data.

    Further information and the latest publication can be found on the gov.uk HBAI webpage. The HBAI team want to provide user-friendly datasets and clearer documentation, so please contact team.hbai@dwp.gov.uk if you have any suggestions or feedback on the new harmonised datasets and documentation.

    An earlier HBAI study, Institute for Fiscal Studies Households Below Average Income Dataset, 1961-1991, is held under SN 3300.

    Latest Edition Information

    For the 19th edition (April 2025), resamples data have been added to the study alongside supporting documentation. Main data back to 1994/95 have been updated to latest-year prices, and the documentation has been updated accordingly.

    Using the HBAI files

    Users should note that either 7-Zip or a recent version of WinZip is needed to unzip the HBAI download zip files, due to their size. The inbuilt Windows compression software will not handle them correctly.

    Labelling of variables
    Users should note that many variables across the resamples files do not include full variable or value labels. This information can be found easily in the documentation - see the Harmonised Data Variables Guide.

    HBAI versions

    The HBAI datasets are available in two versions at the UKDS:

    1. End User Licence (EUL) (Anonymised) Datasets:

    These datasets contain no names, addresses, telephone numbers, bank account details, NINOs or any personal details that can be considered disclosive under the terms of the ONS Disclosure Control guidance. Changes made to the datasets are as follows:

    • All ages above 80 are instead top-coded to 80 years of age.
    • The variable for the amount of Council Tax liability for the household and pensioner flags for the head and spouse have been removed.
    • All amount variables have been rounded to the nearest £1.
    • A very small number of large households (with 10 or more individuals) have been removed from the dataset.

    2. Secure Access Datasets:

    Secure Access datasets for HBAI are held under SN 7196. The Secure Access data are not subject to the same edits as the EUL version and are, therefore, more disclosive and subject to strict access conditions. They are currently only available to UK HE/FE applicants. Prospective users of the Secure Access version of the HBAI must fulfil additional requirements beyond those associated with the EUL datasets.


    Main Topics:

    The HBAI data provide information on potential living standards in the United Kingdom as determined by net (equivalised) disposable income and allows for the analysis of changes in income patterns over time.

  12. B

    HART (2025) - 2021 Census of Canada - Selected Characteristics of Households...

    • borealisdata.ca
    • open.library.ubc.ca
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). HART (2025) - 2021 Census of Canada - Selected Characteristics of Households and Dwellings for Housing Need related to Federal HNA Template - Canada, all provinces and territories at the Census Division (CD) and Census Subdivision (CSD) level [custom tabulation] [Dataset]. http://doi.org/10.5683/SP3/LCXVCR
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 22, 2025
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.5683/SP3/LCXVCRhttps://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.5683/SP3/LCXVCR

    Area covered
    Canada
    Description

    Note: Data on gender diverse households (formerly "2SLGBTQ+" households) has been added as of March 28th, 2025. For more information, please visit HART.ubc.ca. Housing Assessment Resource Tools (HART) This dataset contains 18 tables which draw upon data from the 2021 Canadian Census of Population. The tables are a custom order and contain data pertaining to core housing need and characteristics of households and dwellings. This custom order was placed in collaboration with Housing, Infrastructure and Communities Canada to fill data gaps in their Housing Needs Assessment Template. 17 of the tables each cover a different geography in Canada: one for Canada as a whole, one for all Canadian census divisions (CD), and 15 for all census subdivisions (CSD) across Canada. The 18th table contains the median income for all geographies. Statistics Canada used these median incomes as the "area median household income (AMHI)," from which they derived some of the data fields within the Shelter Costs/Household Income dimension. The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and data fields: Geography: - Country of Canada, all CDs & Country as a whole - All 10 Provinces (Newfoundland, Prince Edward Island (PEI), Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columbia), all CSDs & each Province as a whole - All 3 Territories (Nunavut, Northwest Territories, Yukon), all CSDs & each Territory as a whole *- Data on gender diverse households is only available for geographies (provinces, territories, CDs, CSDs) with a population count greater than 50,000. Data Quality and Suppression: - The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. - Area suppression is used to replace all income characteristic data with an 'x' for geographic areas with populations and/or number of households below a specific threshold. If a tabulation contains quantitative income data (e.g., total income, wages), qualitative data based on income concepts (e.g., low income before tax status) or derived data based on quantitative income variables (e.g., indexes) for individuals, families or households, then the following rule applies: income characteristic data are replaced with an 'x' for areas where the population is less than 250 or where the number of private households is less than 40. Source: Statistics Canada - When showing count data, Statistics Canada employs random rounding in order to reduce the possibility of identifying individuals within the tabulations. Random rounding transforms all raw counts to random rounded counts. Reducing the possibility of identifying individuals within the tabulations becomes pertinent for very small (sub)populations. All counts greater than 10 are rounded to a base of 5, meaning they will end in either 0 or 5. The random rounding algorithm controls the results and rounds the unit value of the count according to a predetermined frequency. Counts ending in 0 or 5 are not changed. Counts less than 10 are rounded to a base of 10, meaning they will be rounded to either 10 or Zero. Universe: Private Households in Non-farm Non-band Off-reserve Occupied Private Dwellings with Income Greater than zero. Households examined for Core Housing Need: Private, non-farm, non-reserve, owner- or renter-households with incomes greater than zero and shelter-cost-to-income ratios less than 100% are assessed for 'Core Housing Need.' Non-family Households with at least one household maintainer aged 15 to 29 attending school are considered not to be in Core Housing Need, regardless of their housing circumstances. Data Fields: Tenure Including Presence of Mortgage and Subsidized Housing; Household size (7) 1. Total - Private households by tenure including presence of mortgage payments and subsidized housing 2. Owner 3. With mortgage 4. Without mortgage 5. Renter 6. Subsidized housing 7. Not subsidized housing Housing indicators in Core Housing Universe (12) 1. Total - Private Households by core housing need status 2. Households examined for core housing need 3. Households in core...

  13. Household Income, Expenditure and Consumption Survey 2010-2011 - Egypt

    • webapps.ilo.org
    Updated Nov 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Agency for Public Mobilization and Statistics (CAPMAS) (2016). Household Income, Expenditure and Consumption Survey 2010-2011 - Egypt [Dataset]. https://webapps.ilo.org/surveyLib/index.php/catalog/1257
    Explore at:
    Dataset updated
    Nov 14, 2016
    Dataset provided by
    Central Agency for Public Mobilization and Statisticshttps://www.capmas.gov.eg/
    Authors
    Central Agency for Public Mobilization and Statistics (CAPMAS)
    Time period covered
    2010 - 2011
    Area covered
    Egypt
    Description

    Abstract

    The Household Income, Expenditure and Consumption Survey (HIECS) is of great importance among other household surveys conducted by statistical agencies in various countries around the world. This survey provides a large amount of data to rely on in measuring the living standards of households and individuals, as well as establishing databases that serve in measuring poverty, designing social assistance programs, and providing necessary weights to compile consumer price indices, considered to be an important indicator to assess inflation. The HIECS 2010/2011 is the tenth Household Income, Expenditure and Consumption Survey that was carried out in 2010/2011, among a long series of similar surveys that started back in 1955. The survey main objectives are:

    • To identify expenditure levels and patterns of population as well as socio- economic and demographic differentials.

    • To measure average household and per-capita expenditure for various expenditure items along with socio-economic correlates.

    • To Measure the change in living standards and expenditure patterns and behavior for the individuals and households in the panel sample, previously surveyed in 2008/2009, for the first time during 12 months representing the survey period.

    • To define percentage distribution of expenditure for various items used in compiling consumer price indices which is considered important indicator for measuring inflation.

    • To estimate the quantities, values of commodities and services consumed by households during the survey period to determine the levels of consumption and estimate the current demand which is important to predict future demands.

    • To define average household and per-capita income from different sources.

    • To provide data necessary to measure standard of living for households and individuals. Poverty analysis and setting up a basis for social welfare assistance are highly dependent on the results of this survey.

    • To provide essential data to measure elasticity which reflects the percentage change in expenditure for various commodity and service groups against the percentage change in total expenditure for the purpose of predicting the levels of expenditure and consumption for different commodity and service items in urban and rural areas.

    • To provide data essential for comparing change in expenditure against change in income to measure income elasticity of expenditure.

    • To study the relationships between demographic, geographical, housing characteristics of households and their income.

    • To provide data necessary for national accounts especially in compiling inputs and outputs tables.

    • To identify consumers behavior changes among socio-economic groups in urban and rural areas.

    • To identify per capita food consumption and its main components of calories, proteins and fats according to its nutrition components and the levels of expenditure in both urban and rural areas.

    • To identify the value of expenditure for food according to its sources, either from household production or not, in addition to household expenditure for non-food commodities and services.

    • To identify distribution of households according to the possession of some appliances and equipments such as (cars, satellites, mobiles ,…etc) in urban and rural areas that enables measuring household wealth index.

    • To identify the percentage distribution of income earners according to some background variables such as housing conditions, size of household and characteristics of head of household.

    Compared to previous surveys, the current survey experienced certain peculiarities, among which :

    1- The total sample of the current survey (26.5 thousand households) is divided into two sections:

    a- A new sample of 16.5 thousand households. This sample was used to study the geographic differences between urban governorates, urban and rural areas, and frontier governorates as well as other discrepancies related to households characteristics and household size, head of the household's education status, etc.

    b- A panel sample with 2008/2009 survey data of around 10 thousand households was selected to accurately study the changes that may have occurred in the households' living standards over the period between the two surveys and over time in the future since CAPMAS will continue to collect panel data for HIECS in the coming years.

    2- The number of enumeration area segments is reduced from 2526 in the previous survey to 1000 segments for the new sample, with decreasing the number of households selected from each segment to be (16/18) households instead of (19/20) in the previous survey.

    3- Some additional questions that showed to be important based on previous surveys results, were added, such as:

    a- Collect the expenditure data on education and health on the person level and not on the household level to enable assessing the real level of average expenditure on those services based on the number of beneficiaries.

    b- The extent of health services provided to monitor the level of services available in the Egyptian society.

    c- Smoking patterns and behaviors (tobacco types- consumption level- quantities purchased and their values).

    d- Counting the number of household members younger than 18 years of age registered in ration cards.

    e- Add more details to social security pensions data (for adults, children, scholarships, families of civilian martyrs due to military actions) to match new systems of social security.

    f- Duration of usage and current value of durable goods aiming at estimating the service cost of personal consumption, as in the case of imputed rents.

    4- Quality control procedures especially for fieldwork, are increased, to ensure data accuracy and avoid any errors in suitable time, as well as taking all the necessary measures to guarantee that mistakes are not repeated, with the application of the principle of reward and punishment. The raw survey data provided by the Statistical Office was cleaned and harmonized by the Economic Research Forum, in the context of a major research project to develop and expand knowledge on equity and inequality in the Arab region. The main focus of the project is to measure the magnitude and direction of change in inequality and to understand the complex contributing social, political and economic forces influencing its levels. However, the measurement and analysis of the magnitude and direction of change in this inequality cannot be consistently carried out without harmonized and comparable micro-level data on income and expenditures. Therefore, one important component of this research project is securing and harmonizing household surveys from as many countries in the region as possible, adhering to international statistics on household living standards distribution. Once the dataset has been compiled, the Economic Research Forum makes it available, subject to confidentiality agreements, to all researchers and institutions concerned with data collection and issues of inequality. Data is a public good, in the interest of the region, and it is consistent with the Economic Research Forum's mandate to make micro data available, aiding regional research on this important topic.

    Geographic coverage

    National

    Analysis unit

    1- Household/family

    2- Individual/Person

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample of HIECS, 2010-2011 is a self-weighted two-stage stratified cluster sample, of around 26500 households. The main elements of the sampling design are described in the following:

    1- Sample Size It has been deemed important to collect a smaller sample size (around 26.5 thousand households) compared to previous rounds due to the convergence in the time period over which the survey is conducted to be every two years instead of five years because of its importance. The sample has been proportionally distributed on the governorate level between urban and rural areas, in order to make the sample representative even for small governorates. Thus, a sample of about 26500 households has been considered, and was distributed between urban and rural with the percentages of 47.1 % and 52.9, respectively. This sample is divided into two parts: a- A new sample of 16.5 thousand households selected from main enumeration areas. b- A panel sample with 2008/2009 survey data of around 10 thousand households.

    2- Cluster size The cluster size in the previous survey has been decreased compared to older surveys since large cluster sizes previously used were found to be too large to yield accepted design effect estimates (DEFT). As a result, it has been decided to use a cluster size of only 16 households (that was increased to 18 households in urban governorates and Giza, in addition to urban areas in Helwan and 6th of October, to account for anticipated non-response in those governorates: in view of past experience indicating that non-response may almost be nil in rural governorates). While the cluster size for the panel sample was 4 households.

    3- Core Sample The core sample is the master sample of any household sample required to be pulled for the purpose of studying the properties of individuals and families. It is a large sample and distributed on urban and rural areas of all governorates. It is a representative sample for the individual characteristics of the Egyptian society. This sample was implemented in January 2010 and its size reached more than 1 million household (1004800 household) selected from 5024 enumeration areas distributed on all governorates (urban/rural) proportionally with the sample size (the enumeration area

  14. a

    NATSEM - Indicators - Child Social Exclusion Index (SLA) 2006 - Dataset -...

    • data.aurin.org.au
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). NATSEM - Indicators - Child Social Exclusion Index (SLA) 2006 - Dataset - AURIN [Dataset]. https://data.aurin.org.au/dataset/uc-natsem-natsem-indicators-child-social-exclusion-sla-2006-sla
    Explore at:
    Dataset updated
    Mar 6, 2025
    License

    Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
    License information was derived automatically

    Description

    NATSEM child social exclusion index (2006) by SLA boundaries in Australia. Brisbane SLAs have been aggregated up to Local Council Electoral Wards and ACT SLAs have been aggregated up to Statistical Sub-Divisions. The index is calculated based on data from the ABS Census of Population and Housing 2006. In the data, the lowest CSE quintile represents the highest risk of child social exclusion. The Child Social Exclusion Index estimates social exclusion risk at a small area level for children aged 0 - 4 , 5 - 15 and 0 - 15 years. The index is based on characteristics of children's parents, families and households, and includes data about parental partnership status, employment and volunteerism, family educational attainment and occupation, household income, housing, transport and internet connection. The index depends on the variables chosen to represent social exclusion and the methodology used to summarise these data. Prior to the indexation, NATSEM remove any SLAs that had low cell counts or had a very high non-response rate in the census. Low cell counts mean that even a very small change in the data can mean a large percentage change (so one extra child at risk of social exclusion may represent a 33 per cent increase if there are only 3 children in the SLA). To deal with the issue of low cell counts, NATSEM excluded from the analysis SLAs with fewer than 30 children in either the 0-4 or 5-15 age groups. These SLAs are noted with an asterisk (*).

  15. d

    Statistics Canada, 2024, \"HART - 2021 Census of Canada - Selected...

    • search.dataone.org
    • borealisdata.ca
    • +1more
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2024). Statistics Canada, 2024, \"HART - 2021 Census of Canada - Selected Characteristics of Households led by Older Adults for Housing Need - Canada, all provinces and territories, at the Census Division (CD), and Census Metropolitan Area (CMA) level [custom tabulation] [Dataset]. http://doi.org/10.5683/SP3/CTSYFE
    Explore at:
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    Area covered
    Canada
    Description

    Housing Assessment Resource Tools (HART) This dataset contains 2 tables and 5 files which draw upon data from the 2021 Census of Canada. The tables are a custom order and contain data pertaining to older adults and housing need. The 2 tables have 6 dimensions in common and 1 dimension that is unique to each table. Table 1's unique dimension is the "Ethnicity / Indigeneity status" dimension which contains data fields related to visible minority and Indigenous identity within the population in private households. Table 2's unique dimension is "Structural type of dwelling and Period of Construction" which contains data fields relating to the structural type and period of construction of the dwelling. Each of the two tables is then split into multiple files based on geography. Table 1 has two files: Table 1.1 includes Canada, Provinces and Territories (14 geographies), CDs of NWT (6), CDs of Yukon (1) and CDs of Nunavut (3); and Table 1.2 includes Canada and the CMAs of Canada (44). Table 2 has three files: Table 2.1 includes Canada, Provinces and Territories (14), CDs of NWT (6), CDs of Yukon (1) and CDs of Nunavut (3); Table 2.2 includes Canada and the CMAs of Canada excluding Ontario and Quebec (20 geographies); and Table 2.3 includes Canada and the CMAs of Canada that are in Ontario and Quebec (25 geographies). The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and data fields: Geography: - Country of Canada as a whole - All 10 Provinces (Newfoundland, Prince Edward Island (PEI), Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columbia) as a whole - All 3 Territories (Nunavut, Northwest Territories, Yukon), as a whole as well as all census divisions (CDs) within the 3 territories - All 43 census metropolitan areas (CMAs) in Canada Data Quality and Suppression: - The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. - Area suppression is used to replace all income characteristic data with an 'x' for geographic areas with populations and/or number of households below a specific threshold. If a tabulation contains quantitative income data (e.g., total income, wages), qualitative data based on income concepts (e.g., low income before tax status) or derived data based on quantitative income variables (e.g., indexes) for individuals, families or households, then the following rule applies: income characteristic data are replaced with an 'x' for areas where the population is less than 250 or where the number of private households is less than 40. Source: Statistics Canada - When showing count data, Statistics Canada employs random rounding in order to reduce the possibility of identifying individuals within the tabulations. Random rounding transforms all raw counts to random rounded counts. Reducing the possibility of identifying individuals within the tabulations becomes pertinent for very small (sub)populations. All counts are rounded to a base of 5, meaning they will end in either 0 or 5. The random rounding algorithm controls the results and rounds the unit value of the count according to a predetermined frequency. Counts ending in 0 or 5 are not changed. Universe: Full Universe: Population aged 55 years and over in owner and tenant households with household total income greater than zero in non-reserve non-farm private dwellings. Definition of Households examined for Core Housing Need: Private, non-farm, non-reserve, owner- or renter-households with incomes greater than zero and shelter-cost-to-income ratios less than 100% are assessed for 'Core Housing Need.' Non-family Households with at least one household maintainer aged 15 to 29 attending school are considered not to be in Core Housing Need, regardless of their housing circumstances. Data Fields: Table 1: Age / Gender (12) 1. Total – Population 55 years and over 2. Men+ 3. Women+ 4. 55 to 64 years 5. Men+ 6. Women+ 7. 65+ years 8. Men+ 9. Women+ 10. 85+ 11. Men+ 12. Women+ Housing indicators (13) 1. Total – Private Households by core housing need status 2. Households below one standard only...

  16. w

    Living Standards Survey 1999 - Tajikistan

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Statistical Agency (Goskomstat) (2020). Living Standards Survey 1999 - Tajikistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/279
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset authored and provided by
    State Statistical Agency (Goskomstat)
    Time period covered
    1999
    Area covered
    Tajikistan
    Description

    Abstract

    The Tajik Living Standards Survey (TLSS) was conducted jointly by the State Statistical Agency and the Center for Strategic Studies under the Office of the President in collaboration with the sponsors, the United Nations Development Programme (UNDP) and the World Bank (WB). International technical assistance was provided by a team from the London School of Economics (LSE). The purpose of the survey is to provide quantitative data at the individual, household and community level that will facilitate purposeful policy design on issues of welfare and living standards of the population of the Republic of Tajikistan in 1999.

    Geographic coverage

    National coverage. The TLSS sample was designed to represent the population of the country as a whole as well as the strata. The sample was stratified by oblast and by urban and rural areas.

    The country is divided into 4 oblasts, or regions; Leninabad in the northwest of the country, Khatlon in the southwest, Rayons of Republican Subordination (RRS) in the middle and to the west of the country, and Gorno-Badakhshan Autonomous Oblast (GBAO) in the east. The capital, Dushanbe, in the RRS oblast, is a separately administrated area. Oblasts are divided into rayons (districts). Rayons are further subdivided into Mahallas (committees) in urban areas, and Jamoats (villages) in rural areas.

    Analysis unit

    • Households
    • Individuals
    • Communites

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The TLSS sample was designed to represent the population of the country as a whole as well as the strata. The sample was stratified by oblast and by urban and rural areas.

    In common with standard LSMS practice a two-stage sample was used. In the first stage 125 primary sample units (PSU) were selected with the probability of selection within strata being proportional to size. At the second stage, 16 households were selected within each PSU, with each household in the area having the same probability of being chosen. [Note: In addition to the main sample, the TLSS also included a secondary sample of 15 extra PSU (containing 400 households) in Dangara and Varzob. Data in the oversampled areas were collected for the sole purpose of providing baseline data for the World Bank Health Project in these areas. The sampling for these additional units was carried out separately after the main sampling procedure in order to allow for their exclusion in nationally representative analysis.] The twostage procedure has the advantage that it provides a self-weighted sample. It also simplified the fieldwork operation as a one-field team could be assigned to cover a number of PSU.

    A critical problem in the sample selection with Tajikistan was the absence of an up to date national sample frame from which to select the PSU. As a result lists of the towns, rayons and jamoats (villages) within rayons were prepared manually. Current data on population size according to village and town registers was then supplied to the regional offices of Goskomstat and conveyed to the center. This allowed the construction of a sample frame of enumeration units by sample size from which to draw the PSU.

    This procedure worked well in establishing a sample frame for the rural population. However administrative units in some of the larger towns and in the cities of Dushanbe, Khojand and Kurgan-Tubbe were too large and had to be sub-divided into smaller enumeration units. Fortuitously the survey team was able to make use of information available as a result of the mapping exercise carried out earlier in the year as preparation for the 2000 Census in order to subdivide these larger areas into enumeration units of roughly similar size.

    The survey team was also able to use the household listings prepared for the Census for the second stage of the sampling in urban areas. In rural areas the selection of households was made using the village registers – a complete listing of all households in the village which is (purported to be) regularly updated by the local administration. When selecting the target households a few extra households (4 in addition to the 16) were also randomly selected and were to be used if replacements were needed. In actuality non-response and refusals from households were very rare and use of replacement households was low. There was never the case that the refusal rate was so high that there were not enough households on the reserve list and this enabled a full sample of 2000 randomly selected households to be interviewed.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was based on the standard LSMS for the CIS countries, and adapted and abridged for Tajikistan. In particular the health section was extended to allow for more in depth information to be collected and a section on food security was also added. The employment section was reduced and excludes information on searching for employment.

    The questionnaires were translated into Tajik, Russian and Uzbek.

    The TLSS consists of three parts: a household questionnaire, a community level questionnaire and a price questionnaire.

    Household questionnaire: the Household questionnaire is comprised of 10 sections covering both household and individual aspects.

    Community/Population point Questionnaire: the Community level or Population Point Questionnaire consists of 8 sections. The community level questionnaire provides information on differences in demographic and economic infrastructure. Open-ended questions in the questionnaire were not coded and hence information on the responses to these qualitative questions is not provided in the data sets.

    Summary of Section contents

    The brief descriptions below provide a summary of the information found in each section. The descriptions are by no means exhaustive of the information covered by the survey and users of the survey need to refer to each particular section of the questionnaire for a complete picture of the information gathered.

    Household information/roster This includes individual level information of all individuals in the household. It establishes who belongs to the household at the time of the interview. Information on gender, age, relation to household head and marital status are included. In the question relating to family status, question 7, “Nekared” means married where nekar is the Islamic (arabic) term for marriage contract. Under Islamic law a man may marry more than once (up-to four wives at any one time). Although during the Soviet period it was illegal to be married to more than one woman this practice did go on. There may be households where the household head is not present but the wife is married or nekared, or in the same household a respondent may answer married and another nekared to the household head.

    Dwelling This section includes information covering the type of dwelling, availability of utilities and water supply as well as questions pertaining to dwelling expenses, rents, and the payment of utilities and other household expenses. Information is at the household level.

    Education This section includes all individuals aged 7 years and older and looks at educational attainment of individuals and reasons for not continuing education for those who are not currently studying. Questions related to educational expenditures at the household level are also covered. Schooling in Tajikistan is compulsory for grades (classes) 1-9. Primary level education refers to grades 1 - 4 for children aged 7 to 11 years old. General secondary level education refers to grades 5-9, corresponding to the age group 12-16 year olds. Post-compulsory schooling can be divided into three types of school: - Upper secondary education covers the grades 10 and 11. - Vocational and Technical schools can start after grade 9 and last around 4 years. These schools can also start after grade 11 and then last only two years. Technical institutions provide medical and technical (e.g. engineering) education as well as in the field of the arts while vocational schools provide training for employment in specialized occupation. - Tertiary or University education can be entered after completing all 11 grades. - Kindergarten schools offer pre-compulsory education for children aged 3 – 6 years old and information on this type of schooling is not covered in this section.

    Health This section examines individual health status and the nature of any illness over the recent months. Additional questions relate to more detailed information on the use of health care services and hospitals, including expenses incurred due to ill health. Section 4B includes a few terms, abbreviations and acronyms that need further clarification. A feldscher is an assistant to a physician. Mediniski dom or FAPs are clinics staffed by physical assistants and/or midwifes and a SUB is a local clinic. CRH is a local hospital while an oblast hospital is a regional hospital based in the oblast administrative centre, and the Repub. Hospital is a national hospital based in the capital, Dushanbe. The latter two are both public hospitals.

    Employment This section covers individuals aged 11 years and over. The first part of this section looks at the different activities in which individuals are involved in order to determine if a person is engaged in an income generating activity. Those who are engaged in such activities are required to answer questions in Part B. This part relates to the nature of the work and the organization the individual is attached to as well as questions relating to income, cash income and in-kind payments. There are also a few questions relating to additional income generating activities in addition to the main activity. Part C examines employment

  17. B

    HART - 2021 Census of Canada - Selected Characteristics of Census Households...

    • borealisdata.ca
    • open.library.ubc.ca
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). HART - 2021 Census of Canada - Selected Characteristics of Census Households for Housing Need - Canada, all provinces and territories at the Census Division (CD) and Census Subdivision (CSD) level [custom tabulation] [Dataset]. http://doi.org/10.5683/SP3/8PUZQA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 22, 2025
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/11.2/customlicense?persistentId=doi:10.5683/SP3/8PUZQAhttps://borealisdata.ca/api/datasets/:persistentId/versions/11.2/customlicense?persistentId=doi:10.5683/SP3/8PUZQA

    Area covered
    Canada
    Dataset funded by
    Canada Mortgage and Housing Corporation
    Description

    Note: The data release is complete as of August 14th, 2023. 1. (Added April 4th) Canada and Census Divisions = Early April 2023 2. (Added May 1st) Ontario, British Columbia, and Alberta Census Subdivisions (CSDs) = Late April 2023 3a. (Added June 8th) Manitoba and Saskatchewan CSDs 3b. (Added June 12th) Quebec CSDs = June 12th 2023 4. (Added June 30th) Newfoundland and Labrador, Prince Edward Island, New Brunswick, and Nova Scotia CSDs = Early July 2023 5. (Added August 14th) Yukon, Northwest Territories, and Nunavut CSDs = Early August 2023. For more information, please visit HART.ubc.ca. Housing Assessment Resource Tools (HART) This dataset contains 18 tables which draw upon data from the 2021 Census of Canada. The tables are a custom order and contains data pertaining to core housing need and characteristics of households. 17 of the tables each cover a different geography in Canada: one for Canada as a whole, one for all Canadian census divisions (CD), and 15 for all census subdivisions (CSD) across Canada. The last table contains the median income for all geographies. Statistics Canada used these median incomes as the "area median household income (AMHI)," from which they derived some of the data fields within the Shelter Costs/Household Income dimension. Included alongside the data tables is a guide to HART's housing need assessment methodology. This guide is intended to support independent use of HART's custom data both to allow for transparent verification of our analysis, as well as supporting efforts to utilize the data for analysis beyond what HART did. There are many data fields in the data order that we did not use that may be of value for others. The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and data fields: Geography: - Country of Canada, all CDs & Country as a whole - All 10 Provinces (Newfoundland, Prince Edward Island (PEI), Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columbia), all CSDs & each Province as a whole - All 3 Territories (Nunavut, Northwest Territories, Yukon), all CSDs & each Territory as a whole Data Quality and Suppression: - The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. - Area suppression is used to replace all income characteristic data with an 'x' for geographic areas with populations and/or number of households below a specific threshold. If a tabulation contains quantitative income data (e.g., total income, wages), qualitative data based on income concepts (e.g., low income before tax status) or derived data based on quantitative income variables (e.g., indexes) for individuals, families or households, then the following rule applies: income characteristic data are replaced with an 'x' for areas where the population is less than 250 or where the number of private households is less than 40. Source: Statistics Canada - When showing count data, Statistics Canada employs random rounding in order to reduce the possibility of identifying individuals within the tabulations. Random rounding transforms all raw counts to random rounded counts. Reducing the possibility of identifying individuals within the tabulations becomes pertinent for very small (sub)populations. All counts greater than 10 are rounded to a base of 5, meaning they will end in either 0 or 5. The random rounding algorithm controls the results and rounds the unit value of the count according to a predetermined frequency. Counts ending in 0 or 5 are not changed. Counts of 10 or less are rounded to a base of 10, meaning they will be rounded to either 10 or zero. Universe: Full Universe: Private Households in Non-farm Non-band Off-reserve Occupied Private Dwellings with Income Greater than zero. Households examined for Core Housing Need: Private, non-farm, non-reserve, owner- or renter-households with incomes greater than zero and shelter-cost-to-income ratios less than 100% are assessed for 'Core Housing Need.' Non-family Households with at least one household maintainer aged 15 to 29 attending school are considered not to be in Core Housing...

  18. Socio-Economic Conditions Survey 2018 - West Bank and Gaza

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Jan 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2022). Socio-Economic Conditions Survey 2018 - West Bank and Gaza [Dataset]. https://datacatalog.ihsn.org/catalog/9928
    Explore at:
    Dataset updated
    Jan 3, 2022
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2018
    Area covered
    Gaza, West Bank, Gaza Strip
    Description

    Abstract

    Socio-Economic Conditions Survey 2018 is a key Palestinian official statistical aspects; it also falls within the mandate of the Palestinian Central Bureau of Statistics (PCBS) to provide updated statistical data on the society conditions and provide data on the most important changes in socio-economic indicators and its trends. The survey came in response to users' needs for social and economic statistical data, and in line with the national policy agenda and the sustainable development agenda. The indicators of Socio-Economic Conditions Survey 2018 covers many socio-economic and environmental aspects, and establishes a comprehensive database on those indicators. Its coverage of a set of sustainable development indicators that are considered as a national and international entitlement. The objective of this survey is to provide a comprehensive database on the most important changes that have taken place in the system of social and economic indicators that PCBS works on, which covers many socio-economic and environmental indicators. It also responds to the needs of many partners and users.The indicators that have been worked on in this survey cover the demographic characteristics of household members, characteristics of the housing unit where household lives, household income, expenses, and consumption, agricultural and economic activities of households, methods used by households to withstand and adapt to their economic conditions, availability of basic services to Palestinian households, assistance received by households and assessment of such assistance, the needs of the Palestinian households to be able to withstand the conditions, the reality of the Palestinian individual's suffering and the quality of life, sustainable development objectives for the survey's relevant indicators.

    Geographic coverage

    National level: State of Palestine. Region level: (West Bank, and Gaza Strip).

    Analysis unit

    Households, and individuals

    Universe

    The target population includes all Palestinian households and individuals with regular residency in Palestine during the survey's period (2018).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sampling and Frame The Sample of the survey is a three-stage stratified cluster systematic random sample of households residing in Palestine.

    Target Population The target population includes all Palestinian households and individuals with regular residency in Palestine during the survey's period (2018). Focus was given to individuals aged 18 years and above to complete an annex to the questionnaire, designed for this age group.

    Sampling Framework In previous survey rounds, sampling was based on census 2007, which includes a list of enumeration areas. An enumeration area is a geographic region with buildings and housing units averaging 124 housing units. In the survey design, they are considered as Primary Sampling Units (PSUs) at the first stage of selecting the sample. Enumeration areas of 2007 were adapted to the enumeration areas of 2017 to be used in future survey rounds. Target sample buildings were set up in 2015 electronically by using Geographic Information Systems (GIS), where the geospatial join tool was used within ArcMap 10.6 to identify the buildings selected in the first stage of the sample design of 8,225 households taken from the general frame buildings for enumeration areas of 2007 which falls within the boundaries of enumeration areas that were updated during the population, housing and establishments census 2017. Only the buildings for the year 2017 were used to link the sites of the sample buildings to the targeted enumeration areas, to ensure tracking households that moved after 2015.

    Sample Size The survey sample comprised 11,008 households at the total level, where 9,926 households responded, they are divided as follows: 1. Fixing the sample of the survey on the Impact of Israeli Aggression on Gaza Strip in 2014 and Socio-Economic Conditions of the Palestinian Households - Main Findings, which was conducted in 2015, with a sample of 8,225 households in the previous round (household-panel),where 7,587 households responded. 2. Sample of new households that consisted of separated individuals (split households) totaled 2,783 households, where 2,339 households responded.

    Sample Design

    Three-stage stratified cluster systematic random sample: - Stage I: Selection of enumeration areas represented in the previous round of the survey on the socioeconomic conditions 2015 including 337 enumeration areas, in addition to enumeration areas in which individuals separated from their households and formed new households and households that changed their place of residence and address to other enumeration areas. - Stage II: Visit the same households from previous round of survey on socioeconomic conditions 2015 (25 households in each enumeration area). Households that changed their place of residence or registered address will be tracked in the existing database to search for the updated data registered in questionnaire. Individuals separated from their households from the previous round and formed new households or joined new households were tracked. - Stage III: A male and female member of each household in the sample (old and new) were selected for stage III among members aged 18 years and above, using Kish (multivariate) tables to fill in the questionnaire for household members aged 18 years and above. Taking into account that the household whose number is an even number in the sample of the enumeration area, we choose a female and the family whose number is an odd number we choose a male.

    Sample Strata The population was divided into the following strata: 1. Governorate (16 Governorates in the West Bank including those parts of Jerusalem, which were annexed by Israeli occupation in 1967 (J1) as a separated stratum, and the Gaza Strip). 2. Locality type (urban, rural, camp). 3. Area C (class C, non-C) as an implicit stratum.

    Domains 1. National level: State of Palestine. 2. Region level: (West Bank, and Gaza Strip). 3. Governorate (16 Governorates in the West Bank including those parts of Jerusalem, which were annexed by Israeli occupation in 1967, and Gaza Strip). 4. The location of the Annexation wall and Isolation (inside the wall, outside the wall). 5. Locality type (urban, rural, camp). 6. Refugee status (refugee, non-refugee). 7. Sex (male, female). 8. Area C (class C, non-C).

    Sampling deviation

    There are no deviations in the proposed sample design.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire is the key tool for data collection. It must be conforming to the technical characteristics of fieldwork to allow for data processing and analysis. The survey questionnaire comprised the following parts: - Part one: Identification data. - Part two: Quality control - Part three: Data of households' members and social data. - Part four: Housing unit data - Part five: Assistance and Coping Strategies Information - Part six: Expenditure and Consumption - Part seven: Food Variation and Facing Food Shortage - Part eight: Income - Part nine: Agricultural and economic activities. - Part ten: Freedom of mobility - In addition to a questionnaire for individuals (18 years old and above): Questions on suffering and life quality, assessment of health, education, administration (Ministry of the Interior) services and information technology.

    The language used in the questionnaire is Arabic with an English questionnaire

    Cleaning operations

    Data Processing

    Data processing was done in different ways including:

    Programming Consistency Check 1. Tablet applications were developed in accordance with the questionnaire's design to facilitate collection of data in the field. The application interfaces were made user-friendly to enable fieldworkers collect data quickly with minimal errors. Proper data entry tools were also used to concord with the question including drop down menus/lists. 2. Develop automated data editing mechanism consistent with the use of technology in the survey and uploading the tools for use to clean the data entered into the database and ensure they are logic and error free as much as possible. The tool also accelerated conclusion of preliminary results prior to finalization of results. 3. GPS and GIS were used to avoid duplication and omission of counting units (buildings, and households).

    In order to work in parallel with Jerusalem (J1) in which the data was collected in paper, the same application that was designed on the tablets was used and some of its properties were modified, there was no need for maps to enter their data as the software was downloaded on the devices after the completion of the editing of the questionnaires.

    Data Cleaning 1. Concurrently with the data collection process, a weekly check of the data entered was carried out centrally and returned to the field for modification during the data collection phase and follow-up. The work was carried out through examination of the questions and variables to ensure that all required items are included, and the check of shifts, stops and range was done too. 2. Data processing was conducted after the fieldwork stage, where it was limited to conducting the final inspection and cleaning of the survey databases. Data cleaning and editing stage focused on: - Editing skips and values allowed. - Checking the consistency between different the questions of questionnaire based on logical relationships. - Checking on the basis of relations between certain questions so that a list of non-identical cases

  19. a

    The first Integrated Household Survey (IHS1) 1997-1998 - Malawi

    • microdata-catalog.afdb.org
    Updated Jun 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Statistical Office (NSO) (2022). The first Integrated Household Survey (IHS1) 1997-1998 - Malawi [Dataset]. https://microdata-catalog.afdb.org/index.php/catalog/125
    Explore at:
    Dataset updated
    Jun 2, 2022
    Dataset authored and provided by
    National Statistical Office (NSO)
    Time period covered
    1997 - 1998
    Area covered
    Malawi
    Description

    Abstract

    The Integrated Household Survey was conducted from October 1997 to November 1998. The survey covered a total of 12,960 Households. The main objective of the survey was to provide a better understanding of the Household socio-economic status and to develop indicators on poverty in Malawi. Some specific objectives of the survey are as follows; · Provide timely and reliable information on key welfare and socio-economic indicators · Provide data to come up with an update of the poverty profile for Malawi · Provide an understanding of the people of Malawi’s living conditions. · Derive an independent estimate of total household expenditure. · Provide information on household consumption on selected items with the aim of revising the weights in the Malawi Consumer Price Index (CPI).

    Geographic coverage

    National, the survey covered all districts of Malawi.

    Analysis unit

    Household Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 1997-98 Integrated Household Survey (IHS) was a comprehensive socioeconomic survey of the living standards of households in all districts of Malawi. The 25 administrative districts of Malawi plus the four major urban centers of the country constituted the 29 primary sampling stratum. Survey households were selected in rural areas through a two-stage selection process using the traditional authorities at the first stage and the enumeration areas within the traditional authorities as the second stage. In urban areas, a single stage selection procedure was employed using the enumeration areas. The probability of selection at each stage was done on the basis of population size.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    the questionnaire consisted of two parts : A large questionnaire and diary of expenditure, the table of contents detailed below:

    Section : Content :Coverage A : Household Identification : Household head B : Household roster : All individuals C-1 : Education of current potential students : All those aged under 25 C-2 : Past education experience : All those aged 25 and above D-1 : Health condition in past 2 weeks :All individuals D-2 : Fertility : Women 15-45 years of age D-3 : Deaths in the household over past 12 months :Household head E : Nutrition : Children between 6 mo. and 5 years Annex E-1 : Immunization : Children up to 5 years F-1 : & Annex Agricultural crop production : Household head F-2 : Income from sale of livestock, poultry, and related products : Household head F-3 : Income from non-farming business (last one month) : Household head F-4 : Income from employment, transfers, and other income : Household head and those receiving such income G-1 : Employment and time use (last 12 months) : Individuals reported in Sec. B to be an 'employee', 'family business worker', selfemployed' or 'employer' G-2 : Employment search (last 12 months) : If reported in Sec. B to be 'seeking work' G-3 : Time use of household members (last 7 days) : Individuals aged 5 and above H Migration : Individuals aged 10 and above I & Annex : Housing and access to facilities : Household head J-1 Assets : - Household durables : Household head J-2 Assets : - Livestock and poultry : Household head J-3 & Annex : Assets - Land (cultivated) : Household head K-1 & Annex : Household expenditures - Own account (non-cash) food expenditure (last 3 days) :Household head K-2 :Major household expenditures : Household head Annex L : Credit (last 12 months) : Household head Diary : Diary of Expenditure : Household head

    Cleaning operations

    The data was cleaned between May 1999 to April 2000. The data set consisted of 10,698 households when the 'c2' version of the cleaned IHS data was released in early May 2000. However, as the diary of expenditure was not consistently maintained by enumerators across the country, only 6,586 households were judged to have reliable expenditure and consumption information for use in the derivation of the poverty line. Table 43 at the end of "poverty profile report" shows the size of the various samples by district, together with the expansion factors used to extend the survey results to the entire population. In several instances, the number of sample households remaining in a district in the 6,586 household data set is very small: In one district, Ntchisi, no survey households remain in the smaller data set.

    Response rate

    The National Statistical Office (NSO) administered the IHS questionnaire to 12,960 households over a 12 month period, November 1997 to October 1998. after cleanning data between May 1999 to April 2000 the data set consisted of 10.698 households.

  20. a

    Climate Ready Boston Social Vulnerability

    • hub.arcgis.com
    • data.boston.gov
    • +3more
    Updated Sep 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BostonMaps (2017). Climate Ready Boston Social Vulnerability [Dataset]. https://hub.arcgis.com/datasets/34f2c48b670d4b43a617b1540f20efe3
    Explore at:
    Dataset updated
    Sep 21, 2017
    Dataset authored and provided by
    BostonMaps
    Area covered
    Description

    Social vulnerability is defined as the disproportionate susceptibility of some social groups to the impacts of hazards, including death, injury, loss, or disruption of livelihood. In this dataset from Climate Ready Boston, groups identified as being more vulnerable are older adults, children, people of color, people with limited English proficiency, people with low or no incomes, people with disabilities, and people with medical illnesses. Source:The analysis and definitions used in Climate Ready Boston (2016) are based on "A framework to understand the relationship between social factors that reduce resilience in cities: Application to the City of Boston." Published 2015 in the International Journal of Disaster Risk Reduction by Atyia Martin, Northeastern University.Population Definitions:Older Adults:Older adults (those over age 65) have physical vulnerabilities in a climate event; they suffer from higher rates of medical illness than the rest of the population and can have some functional limitations in an evacuation scenario, as well as when preparing for and recovering from a disaster. Furthermore, older adults are physically more vulnerable to the impacts of extreme heat. Beyond the physical risk, older adults are more likely to be socially isolated. Without an appropriate support network, an initially small risk could be exacerbated if an older adult is not able to get help.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for population over 65 years of age.Attribute label: OlderAdultChildren: Families with children require additional resources in a climate event. When school is cancelled, parents need alternative childcare options, which can mean missing work. Children are especially vulnerable to extreme heat and stress following a natural disaster.Data source: 2010 American Community Survey 5-year Estimates (ACS) data by census tract for population under 5 years of age.Attribute label: TotChildPeople of Color: People of color make up a majority (53 percent) of Boston’s population. People of color are more likely to fall into multiple vulnerable groups aswell. People of color statistically have lower levels of income and higher levels of poverty than the population at large. People of color, many of whom also have limited English proficiency, may not have ready access in their primary language to information about the dangers of extreme heat or about cooling center resources. This risk to extreme heat can be compounded by the fact that people of color often live in more densely populated urban areas that are at higher risk for heat exposure due to the urban heat island effect.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract: Black, Native American, Asian, Island, Other, Multi, Non-white Hispanics.Attribute label: POC2Limited English Proficiency: Without adequate English skills, residents can miss crucial information on how to preparefor hazards. Cultural practices for information sharing, for example, may focus on word-of-mouth communication. In a flood event, residents can also face challenges communicating with emergency response personnel. If residents are more sociallyisolated, they may be less likely to hear about upcoming events. Finally, immigrants, especially ones who are undocumented, may be reluctant to use government services out of fear of deportation or general distrust of the government or emergency personnel.Data Source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract, defined as speaks English only or speaks English “very well”.Attribute label: LEPLow to no Income: A lack of financial resources impacts a household’s ability to prepare for a disaster event and to support friends and neighborhoods. For example, residents without televisions, computers, or data-driven mobile phones may face challenges getting news about hazards or recovery resources. Renters may have trouble finding and paying deposits for replacement housing if their residence is impacted by flooding. Homeowners may be less able to afford insurance that will cover flood damage. Having low or no income can create difficulty evacuating in a disaster event because of a higher reliance on public transportation. If unable to evacuate, residents may be more at risk without supplies to stay in their homes for an extended period of time. Low- and no-income residents can also be more vulnerable to hot weather if running air conditioning or fans puts utility costs out of reach.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for low-to- no income populations. The data represents a calculated field that combines people who were 100% below the poverty level and those who were 100–149% of the poverty level.Attribute label: Low_to_NoPeople with Disabilities: People with disabilities are among the most vulnerable in an emergency; they sustain disproportionate rates of illness, injury, and death in disaster events.46 People with disabilities can find it difficult to adequately prepare for a disaster event, including moving to a safer place. They are more likely to be left behind or abandoned during evacuations. Rescue and relief resources—like emergency transportation or shelters, for example— may not be universally accessible. Research has revealed a historic pattern of discrimination against people with disabilities in times of resource scarcity, like after a major storm and flood.Data source: 2008-2012 American Community Survey 5-year Estimates (ACS) data by census tract for total civilian non-institutionalized population, including: hearing difficulty, vision difficulty, cognitive difficulty, ambulatory difficulty, self-care difficulty, and independent living difficulty. Attribute label: TotDisMedical Illness: Symptoms of existing medical illnesses are often exacerbated by hot temperatures. For example, heat can trigger asthma attacks or increase already high blood pressure due to the stress of high temperatures put on the body. Climate events can interrupt access to normal sources of healthcare and even life-sustaining medication. Special planning is required for people experiencing medical illness. For example, people dependent on dialysis will have different evacuation and care needs than other Boston residents in a climate event.Data source: Medical illness is a proxy measure which is based on EASI data accessed through Simply Map. Health data at the local level in Massachusetts is not available beyond zip codes. EASI modeled the health statistics for the U.S. population based upon age, sex, and race probabilities using U.S. Census Bureau data. The probabilities are modeled against the census and current year and five year forecasts. Medical illness is the sum of asthma in children, asthma in adults, heart disease, emphysema, bronchitis, cancer, diabetes, kidney disease, and liver disease. A limitation is that these numbers may be over-counted as the result of people potentially having more than one medical illness. Therefore, the analysis may have greater numbers of people with medical illness within census tracts than actually present. Overall, the analysis was based on the relationship between social factors.Attribute label: MedIllnesOther attribute definitions:GEOID10: Geographic identifier: State Code (25), Country Code (025), 2010 Census TractAREA_SQFT: Tract area (in square feet)AREA_ACRES: Tract area (in acres)POP100_RE: Tract population countHU100_RE: Tract housing unit countName: Boston Neighborhood

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Golden Oak Research Group (2018). Insightful & Vast USA Statistics [Dataset]. https://www.kaggle.com/forums/f/6032/insightful-vast-usa-statistics
Organization logo

Insightful & Vast USA Statistics

Income, Age, Marriage, Mortgage, Home Equity Loan & Demographics

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 19, 2018
Dataset provided by
Kaggle
Authors
Golden Oak Research Group
Area covered
United States
Description

Very Important

  • Check out the new must-see kernel for this dataset Click Here
  • Make Sure to upvote for more datasets and kernel :D

Overview:

Explore the dataset and potentially gain valuable insight into your data science project through interesting features. The dataset was developed for a portfolio optimization graduate project I was working on. The goal was to the monetize risk of company deleveraging by associated with changes in economic data. Applications of the dataset may include. To see the data in action visit my analytics page. Analytics Page & Dashboard and to access all 295,000+ records click here.

  • Mortgage-Backed Securities
  • Geographic Business Investment
  • Real Estate Analysis

For any questions, you may reach us at research_development@goldenoakresearch.com. For immediate assistance, you may reach me on at 585-626-2965. Please Note: the number is my personal number and email is preferred

Statistical Themes:

Note: in total there are 75 fields the following are just themes the fields fall under Home Owner Costs: Sum of utilities, property taxes.

  • Second Mortgage: Households with a second mortgage statistics.
  • Home Equity Loan: Households with a Home equity Loan statistics.
  • Debt: Households with any type of debt statistics.
  • Mortgage Costs: Statistics regarding mortgage payments, home equity loans, utilities and property taxes
  • Home Owner Costs: Sum of utilities, property taxes statistics
  • Gross Rent: Contract rent plus the estimated average monthly cost of utility features
  • Gross Rent as Percent of Income Gross rent as the percent of income very interesting
  • High school Graduation: High school graduation statistics.
  • Population Demographics: Population demographic statistics.
  • Age Demographics: Age demographic statistics.
  • Household Income: Total income of people residing in the household.
  • Family Income: Total income of people related to the householder.

Sources, if you wish to get the data your self :)

2012-2016 ACS 5-Year Documentation was provided by the U.S. Census Reports. Retrieved May 2, 2018, from

Access All 325,258 Location of Our Most Complete Database Ever:

Providing you the potential to monetize risk and optimize your investment portfolio through quality economic features at unbeatable price. Access all 295,000+ records on an incredibly small scale, see links below for more details:

Search
Clear search
Close search
Google apps
Main menu