The statistic shows the total population of India from 2019 to 2029. In 2023, the estimated total population in India amounted to approximately 1.43 billion people.
Total population in India
India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population.
With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year.
As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Indian Village by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Indian Village across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 56.64% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Indian Village Population by Race & Ethnicity. You can refer the same here
WorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below.
These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country.
They can also be visualised and explored through the woprVision App.
The remaining datasets in the links below are produced using the "top-down" method,
with either the unconstrained or constrained top-down disaggregation method used.
Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):
- Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020.
- Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
-Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using
unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
-Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
-Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020.
-Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using
constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national
population estimates (UN 2019).
Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.
The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.
The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.
Excluded populations living in Northeast states and remote islands and Jammu and Kashmir. The excluded areas represent less than 10 percent of the total population.
Individual
Observation data/ratings [obs]
In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.
In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.
In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.
The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).
For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.
Sample size for India is 3000.
Face-to-face [f2f]
Questionnaires are available on the website.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.
In this study we use long-term satellite, climate, and crop observations to document the spatial distribution of the recent stagnation in food grain production affecting the water-limited tropics (WLT), a region where 1.5 billion people live and depend on local agriculture that is constrained by chronic water shortages. Overall, our analysis shows that the recent stagnation in food production is corroborated by satellite data. The growth rate in annually integrated vegetation greenness, a measure of crop growth, has declined significantly (p < 0.10) in 23% of the WLT cropland area during the last decade, while statistically significant increases in the growth rates account for less than 2%. In most countries, the decade-long declines appear to be primarily due to unsustainable crop management practices rather than climate alone. One quarter of the statistically significant declines are observed in India, which with the world’s largest population of food-insecure people and largest WLT croplands, is a leading example of the observed declines. Here we show geographically matching patterns of enhanced crop production and irrigation expansion with groundwater that have leveled off in the past decade. We estimate that, in the absence of irrigation, the enhancement in dry-season food grain production in India, during 1982–2002, would have required an increase in annual rainfall of at least 30% over almost half of the cropland area. This suggests that the past expansion of use of irrigation has not been sustainable. We expect that improved surface and groundwater management practices will be required to reverse the recent food grain production declines. MDPI and ACS Style Milesi, C.; Samanta, A.; Hashimoto, H.; Kumar, K.K.; Ganguly, S.; Thenkabail, P.S.; Srivastava, A.N.; Nemani, R.R.; Myneni, R.B. Decadal Variations in NDVI and Food Production in India. Remote Sens. 2010, 2, 758-776. AMA Style Milesi C., Samanta A., Hashimoto H., Kumar K.K., Ganguly S., Thenkabail P.S., Srivastava A.N., Nemani R.R., Myneni R.B. Decadal Variations in NDVI and Food Production in India. Remote Sensing. 2010; 2(3):758-776. Chicago/Turabian Style Milesi, Cristina; Samanta, Arindam; Hashimoto, Hirofumi; Kumar, K. Krishna; Ganguly, Sangram; Thenkabail, Prasad S.; Srivastava, Ashok N.; Nemani, Ramakrishna R.; Myneni, Ranga B. 2010. "Decadal Variations in NDVI and Food Production in India." Remote Sens. 2, no. 3: 758-776.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
It contains latitudes and longitudes ,population of major cities of India.
https://simplemaps.com/data/in-cities
I wanted to create interactive maps for one of my project so i created this dataset.
Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.
By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.
National Coverage. Sample excludes Northeast states and remote islands. In addition, some districts in Assam, Bihar, Jammu and Kashmir, Jharkhand, and Uttar Pradesh were replaced because of security concerns. The excluded areas represent less than 10% of the population.
Individual
The target population is the civilian, non-institutionalized population 15 years and above.
Sample survey data [ssd]
Triennial
As in the first edition, the indicators in the 2014 Global Findex are drawn from survey data covering almost 150,000 people in more than 140 economies-representing more than 97 percent of the world's population. The survey was carried out over the 2014 calendar year by Gallup, Inc. as part of its Gallup World Poll, which since 2005 has continually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 140 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. The set of indicators will be collected again in 2017.
Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or is the customary methodology. In most economies the fieldwork is completed in two to four weeks. In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid. In economies where cultural restrictions dictate gender matching, respondents are randomly selected through the Kish grid from among all eligible adults of the interviewer's gender.
In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to reach a person in each household, spread over different days and times of day.
The sample size in India was 3,000 individuals.
Computer Assisted Personal Interview [capi]
The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.
Questions on cash withdrawals, saving using an informal savings club or person outside the family, domestic remittances, school fees, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.
Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Asli Demirguc-Kunt, Leora Klapper, Dorothe Singer, and Peter Van Oudheusden, “The Global Findex Database 2014: Measuring Financial Inclusion around the World.” Policy Research Working Paper 7255, World Bank, Washington, D.C.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIn India, the prevalence of overweight and obesity has increased rapidly in recent decades. Given the association between overweight and obesity with many non-communicable diseases, forecasts of the future prevalence of overweight and obesity can help inform policy in a country where around one sixth of the world’s population resides.MethodsWe used a system of multi-state life tables to forecast overweight and obesity prevalence among Indians aged 20–69 years by age, sex and urban/rural residence to 2040. We estimated the incidence and initial prevalence of overweight using nationally representative data from the National Family Health Surveys 3 and 4, and the Study on global AGEing and adult health, waves 0 and 1. We forecasted future mortality, using the Lee-Carter model fitted life tables reported by the Sample Registration System, and adjusted the mortality rates for Body Mass Index using relative risks from the literature.ResultsThe prevalence of overweight will more than double among Indian adults aged 20–69 years between 2010 and 2040, while the prevalence of obesity will triple. Specifically, the prevalence of overweight and obesity will reach 30.5% (27.4%-34.4%) and 9.5% (5.4%-13.3%) among men, and 27.4% (24.5%-30.6%) and 13.9% (10.1%-16.9%) among women, respectively, by 2040. The largest increases in the prevalence of overweight and obesity between 2010 and 2040 is expected to be in older ages, and we found a larger relative increase in overweight and obesity in rural areas compared to urban areas. The largest relative increase in overweight and obesity prevalence was forecast to occur at older age groups.ConclusionThe overall prevalence of overweight and obesity is expected to increase considerably in India by 2040, with substantial increases particularly among rural residents and older Indians. Detailed predictions of excess weight are crucial in estimating future non-communicable disease burdens and their economic impact.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rising global food insecurity driven by population growth needs urgent measure for universal access to food. This research employs Comparative Performance Analysis (CPA) to evaluate the Global Food Security Index (GFSI), its components [Affordability (AF), Availability (AV), Quality & Safety (Q&S) and Sustainability & Adaptation (S&A)] in tandem with Annual Population Change (APC) for world’s five most populous countries (India, China, USA, Indonesia and Pakistan) using dataset spanning from 2012 to 2022. CPA is applied using descriptive analysis, correlation analysis, Rule of Thumb (RoT) and testing of hypothesis etc. RoT is used with a new analytical approach by applying the significance measures for correlation coefficients. The study suggests that India should enhance its GFSI rank by addressing AF and mitigating the adverse effects of APC on GFSI with a particular focus on Q&S and S&A. China needs to reduce the impact of APC on GFSI by prioritizing AV and S&A. The USA is managing its GFSI well, but focused efforts are still required to reduce APC’s impact on Q&S and S&A. Indonesia should improve across all sectors with a particular focus on APC reduction and mitigating its adverse effects on AF, AV, and S&A. Pakistan should intensify efforts to boost its rank and enhance all sectors with reducing APC. There is statistically significant and negative relation between GFSI and APC for China, Indonesia and found insignificant for others countries. This study holds promise for providing crucial policy recommendations to enhance food security by tackling its underlying factors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The India Lights platform shows light output at night for 20 years for 600,000 villages across India. The Defense Meteorological Satellite Program (DMSP) has taken pictures of the Earth every night from 1993 to 2013. Researchers at the University of Michigan, in collaboration with the World Bank, used the DMSP images to extract the data you see on the India Lights platform. Each point you see on the map represents the light output of a specific village at a specific point in time. On the district level, the map also allows you to filter to view villages that have participated in India’s flagship electrification program. This tremendous trove of data can be used to look at changes in light output, which can be used to complement research about electrification in the country. About the Data: The DMSP raster images have a resolution of 30 arc-seconds, equal to roughly 1 square kilometer at the equator. Each pixel of the image is assigned a number on a relative scale from 0 to 63, with 0 indicating no light output and 63 indicating the highest level of output. This number is relative and may change depending on the gain settings of the satellite’s sensor, which constantly adjusts to current conditions as it takes pictures throughout the day and at night. Methodology To derive a single measurement, the light output values were extracted from the raster image for each date for the pixels that correspond to each village's approximate latitude and longitude coordinates. We then processed the data through a series of filtering and aggregation steps. First, we filtered out data with too much cloud cover and solar glare, according to recommendations from the National Oceanic and Atmospheric Administration (NOAA). We aggregated the resulting 4.4 billion data points by taking the median measurement for each village over the course of a month. We adjusted for differences among satellites using a multiple regression on year and satellite to isolate the effect of each satellite. To analyze data on the state and district level, we also determined the median village light output within each administrative boundary for each month in the twenty-year time span. These monthly aggregates for each village, district, and state are the data that we have made accessible through the API. To generate the map and light curve visualizations that are presented on this site, we performed some additional data processing. For the light curves, we used a rolling average to smooth out the noise due to wide fluctuations inherent in satellite measurements. For the map, we took a random sample of 10% of the villages, stratified over districts to ensure good coverage across regions of varying village density. Acknowledgments The India Lights project is a collaboration between Development Seed, The World Bank, and Dr. Brian Min at the University of Michigan. •Satellite base map © Mapbox. •India village locations derived from India VillageMap © 2011-2015 ML Infomap. •India population data and district boundaries © 2011-2015 ML Infomap. •Data for reference map of Uttar Pradesh, India, from Natural Earth Data •Banerjee, Sudeshna Ghosh; Barnes, Douglas; Singh, Bipul; Mayer, Kristy; Samad, Hussain. 2014. Power for all : electricity access challenge in India. A World Bank study. Washington, DC ; World Bank Group. •Hsu, Feng-Chi, Kimberly Baugh, Tilottama Ghosh, Mikhail Zhizhin, and Christopher Elvidge. "DMSP-OLS Radiance Calibrated Nighttime Lights Time Series with Intercalibration." Remote Sensing 7.2 (2015): 1855-876. Web. •Min, Brian. Monitoring Rural Electrification by Satellite. Tech. World Bank, 30 Dec. 2014. Web. •Min, Brian. Power and the Vote: Elections and Electricity in the Developing World. New York and Cambridge: Cambridge University Press. 2015. •Min, Brian, and Kwawu Mensan Gaba. Tracking Electrification in Vietnam Using Nighttime Lights. Remote Sensing 6.10 (2014): 9511-529. •Min, Brian, and Kwawu Mensan Gaba, Ousmane Fall Sarr, Alassane Agalassou. Detection of Rural Electrification in Africa using DMSP-OLS Night Lights Imagery. International Journal of Remote Sensing 34.22 (2013):8118-8141. Disclaimer Country borders or names do not necessarily reflect the World Bank Group's official position. The map is for illustrative purposes and does not imply the expression of any opinion on the part of the World Bank, concerning the legal status of any country or territory or concerning the delimitation of frontiers or boundaries.
France was the first country to introduce the Goods and Services Tax or GST. Currently, nearly 160 countries have imposed GST/VAT in some form or the other. Some countries have VAT as an alternative to GST. Yet, conceptually, it is a destination-based tax imposed on the consumption of goods and services. GST is a tax that replaced many indirect taxes in India. Goods and Services Tax was implemented in India from 1 July 2017. Here in India, most of the population is middle class and lower middle class where people either belong to service class or they depend on agriculture for their livelihood. In this scenario, the most important question is what is the impact of GST on the common man or the middle class family.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Studies on carnivores are skewed toward larger species in India, limiting ecological information of the smaller ones. Basic ecological understanding like population density, distribution, habitat-use patterns of small carnivores is lacking. This inadequate knowledge has led to disagreement between conservation approaches in different landscapes. Honey badgers (Mellivora capensis) are cryptic carnivores distributed across large areas of Africa and Asia; however, fundamental ecological knowledge is scarce. The species is thought to exist at low population densities throughout its range. We used a large camera trap dataset from a tiger reserve in Maharashtra State, India to understand the population density, habitat preference, and diel activity pattern of the species. We applied an extension of the spatial count model for the estimation of population. Habitat preference analyses were carried out using generalized linear models and activity patterns were analyzed using kernel-density functions. The population density was estimated as 14.09 (95% CI 10–22.25) individuals per 100 km2. Habitat use revealed a positive association with forest cover and negative association with elevation. This may expose the species to other large carnivores in the habitat but honey badger activity pattern peaked at midnight retaining minimum temporal overlap with other large carnivores (e.g., tiger Panthera tigris, leopard Panthera pardus, and dhole Cuon alpinus) and moderate overlap with small carnivores (e.g., jungle cat Felis chaus, rusty-spotted cat Prionailurus rubiginosus). These behaviors, in turn, may facilitate the coexistence of species at such high density even with high carnivore density. We hope the findings of this study will fill the existing knowledge gap of this species and aid in guiding the conservation of the species in other landscapes and reserves.
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: 2017 PPP per day data was reported at 2.010 Intl $/Day in 2011. This records an increase from the previous number of 1.610 Intl $/Day for 2004. India IN: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: 2017 PPP per day data is updated yearly, averaging 1.810 Intl $/Day from Dec 2004 (Median) to 2011, with 2 observations. The data reached an all-time high of 2.010 Intl $/Day in 2011 and a record low of 1.610 Intl $/Day in 2004. India IN: Survey Mean Consumption or Income per Capita: Bottom 40% of Population: 2017 PPP per day data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Social: Poverty and Inequality. Mean consumption or income per capita (2017 PPP $ per day) of the bottom 40%, used in calculating the growth rate in the welfare aggregate of the bottom 40% of the population in the income distribution in a country.;World Bank, Global Database of Shared Prosperity (GDSP) (http://www.worldbank.org/en/topic/poverty/brief/global-database-of-shared-prosperity).;;The choice of consumption or income for a country is made according to which welfare aggregate is used to estimate extreme poverty in the Poverty and Inequality Platform (PIP). The practice adopted by the World Bank for estimating global and regional poverty is, in principle, to use per capita consumption expenditure as the welfare measure wherever available; and to use income as the welfare measure for countries for which consumption is unavailable. However, in some cases data on consumption may be available but are outdated or not shared with the World Bank for recent survey years. In these cases, if data on income are available, income is used. Whether data are for consumption or income per capita is noted in the footnotes. Because household surveys are infrequent in most countries and are not aligned across countries, comparisons across countries or over time should be made with a high degree of caution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for EMPLOYMENT RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The National Family Health Survey (NFHS) is a large-scale, multi-round survey conducted in a representative sample of households throughout India. Four rounds of the survey have been conducted in 1992-93, 1998-99, 2005-06, and 2015-16. The fifth round of the survey (2019-2020) is currently in the field. All of the surveys are part of the Demographic and Health Surveys (DHS) Program. The surveys provide information on population, health, and nutrition at the national and state level. Since 2015-16, the surveys have also provided information at the district level. Some of the major topics included in NFHS-4 (2015-16) are fertility, infant and child mortality, family planning, maternal and reproductive health, child vaccinations, prevalence and treatment of childhood diseases, nutrition, women’s empowerment, domestic violence, marriage, sexual activity, employment, anemia, anthropometry, HIV/AIDS knowledge and testing, tobacco and alcohol use, biomarker tests (anthropometry, anemia, HIV, blood pressure, and blood glucose), and water, sanitation, and hygiene. The primary objective of the NFHS surveys is to provide essential data on health and family welfare, as well as emerging issues in these areas. The information collected through the NFHS surveys is intended to assist policymakers and program managers in setting benchmarks and examining progress over time in India’s health sector. The Ministry of Health and Family Welfare (MOHFW), Government of India, designated the International Institute for Population Sciences (IIPS), Mumbai, as the agency responsible for providing coordination and technical guidance for all of the surveys. IIPS has collaborated with a large number of field agencies for survey implementation. The Demographic and Health Surveys Program has provided technical assistance for all of the surveys.
You can access the data through the DHS website. Data files are available in the following five formats:
%3C!-- --%3E
All datasets are distributed in archived ZIP files that include the data file and its associated documentation. The DHS Program is authorized to distribute, at no cost, unrestricted survey data files for legitimate academic research. Registration is required to access the data.
Additional information about the surveys is available on the India page on the DHS Program website. This page provides a list of surveys and reports, plus Country Quickstats for India, and it is the gateway to accessing more information about the India surveys and datasets.
Methodology
2015-16 National Family Health Survey (NFHS-4): Fieldwork for NFHS-4 was conducted in two phases, from January 2015 to December 2016. The fieldwork was conducted by 14 field agencies, including three Population Research Centers. Laboratory testing for HIV was done by seven laboratories throughout India. NFHS-4 collected information from a nationally representative sample of 601,509 households, 699,686 women age 15-49, and 112,122 men age 15-54. The survey covered all 29 states, 7 Union Territories, and 640 districts in India.
Funding for the survey was provided by the Ministry of Health and Family Welfare, Government of India; the United States Agency for International Development (USAID); UKAID/DFID; the Bill & Melinda Gates Foundation; UNICEF; the United Nations Population Fund (UNFPA); and the MacArthur Foundation. Technical Assistance for NFHS-4 was provided by Macro International, Maryland, USA.
2005-06 National Family Health Survey (NFHS-3): Fieldwork for NFHS-3 was conducted in two phases, from November 2005 to August 2006. The fieldwork was conducted by 18 field agencies, including six Population Research Centers. Laboratory testing for HIV was done by the SRL Ranbaxy laboratory in Mumbai. NFHS-3 collected information from a nationally representative sample of 109,041 households, 124,385 women age 15-49, and 74,369 men age 15-54. The survey covered all 29 states. Only the Union Territories were not included.
Funding for the survey was provided by the United States Agency for International Development (USAID); United Kingdom Department for International Development (DFID); the Bill & Melinda Gates Foundation; UNICEF; the United Nations Population Fund (UNFPA); and the Government of India. Technical assistance for NFHS-3 was provided by Macro International, Maryland, USA.
1998-99 National Family Health Survey (NFHS-2): Fieldwork for NFHS-2 was conducted in two phases, from November 1998 to December 1999. The fieldwork was conducted by 13 field agencies, including five Population Research Centers. NFHS-2 collected information from a nationally representative sample of 91,196 households and 89,188 ever-married women age 15-49. Male interviews were not included in the survey. The survey cover
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Google Trends data have been used to investigate various themes on online information seeking. It was unclear if the population from different parts of the world shared the same amount of attention to different mask types during the COVID-19 pandemic. This study aimed to reveal which types of masks were frequently searched by the public in different countries, and evaluated if public attention to masks could be related to mandatory policy, stringency of the policy, and transmission rate of COVID-19. By referring to an open dataset hosted at the online database Our World in Data, the 10 countries with the highest total number of COVID-19 cases as of 9th of February 2022 were identified. For each of these countries, the weekly new cases per million population, reproduction rate (of COVID-19), stringency index, and face covering policy score were computed from the raw daily data. Google Trends were queried to extract the relative search volume (RSV) for different types of masks from each of these countries. Results found that Google searches for N95 masks were predominant in India, whereas surgical masks were predominant in Russia, FFP2 masks were predominant in Spain, and cloth masks were predominant in both France and United Kingdom. The United States, Brazil, Germany, and Turkey had two predominant types of mask. The online searching behavior for masks markedly varied across countries. For most of the surveyed countries, the online searching for masks peaked during the first wave of COVID-19 pandemic before the government implemented mandatory mask wearing. The search for masks positively correlated with the government response stringency index but not with the COVID-19 reproduction rate or the new cases per million.
The statistic shows the total population of India from 2019 to 2029. In 2023, the estimated total population in India amounted to approximately 1.43 billion people.
Total population in India
India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population.
With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year.
As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.