91 datasets found
  1. Population of India

    • kaggle.com
    zip
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajarshi Datta (2023). Population of India [Dataset]. https://www.kaggle.com/datasets/rdatta871/population-of-india
    Explore at:
    zip(2072 bytes)Available download formats
    Dataset updated
    Jun 23, 2023
    Authors
    Rajarshi Datta
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    India
    Description

    India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.

    This dataset contains the population distribution by state, gender, sex & region.

    The file is in .csv format thus it is accessible everywhere.

  2. e

    India - Population density - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Apr 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). India - Population density - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/india--population-density-2015
    Explore at:
    Dataset updated
    Apr 3, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available. India data available from WorldPop here. Data and Resources TIFF India - Population density (2015) DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid...

  3. Indian Cities by Population 👥

    • kaggle.com
    zip
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    meer atif magsi (2023). Indian Cities by Population 👥 [Dataset]. https://www.kaggle.com/datasets/meeratif/list-of-cities-in-china-by-population
    Explore at:
    zip(6556 bytes)Available download formats
    Dataset updated
    Sep 6, 2023
    Authors
    meer atif magsi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Title: Population Data of Indian Cities (2011 and 2001)

    Description: This dataset contains population information for various cities in India, categorized by rank, city name, and population figures for the years 2011 and 2001. Additionally, it includes the corresponding state or union territory to which each city belongs. The dataset provides insights into population changes over a decade in different cities across India.

    Columns:

    Rank: This column represents the rank of each city based on its population in the year 2011. Cities are typically ranked in descending order of population, with the most populous city having the rank 1.

    City: This column contains the names of the cities for which population data is recorded.

    Population (2011): This column displays the population count of each city as of the year 2011. The population figures are likely to be recorded in thousands or millions

    Population (2001): This column provides the population count of each city as of the year 2001. Comparing this data with the 2011 population figures allows for an analysis of population growth or decline over the decade.

    State or Union Territory: This column indicates the administrative division to which each city belongs. In India, cities are typically grouped into states or union territories, and this column helps identify the geographical context of each city.

  4. World data population

    • kaggle.com
    zip
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanishq dublish (2024). World data population [Dataset]. https://www.kaggle.com/datasets/tanishqdublish/world-data-population
    Explore at:
    zip(14672 bytes)Available download formats
    Dataset updated
    Jan 12, 2024
    Authors
    Tanishq dublish
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    World
    Description

    Context The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.

    The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.

    Content This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.

    Dataset Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.

    This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.

  5. N

    Indian Village, IN Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Indian Village, IN Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1e82dcd-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    IN, Indian Village
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Indian Village by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Indian Village. The dataset can be utilized to understand the population distribution of Indian Village by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Indian Village. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Indian Village.

    Key observations

    Largest age group (population): Male # 75-79 years (10) | Female # 10-14 years (11). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Indian Village population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Indian Village is shown in the following column.
    • Population (Female): The female population in the Indian Village is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Indian Village for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Indian Village Population by Gender. You can refer the same here

  6. India - Population Counts

    • data.amerigeoss.org
    geotiff
    Updated Oct 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2021). India - Population Counts [Dataset]. https://data.amerigeoss.org/it/dataset/worldpop-india-population
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Oct 12, 2021
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    India
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.


    Bespoke methods used to produce datasets for specific individual countries are available through the WorldPop Open Population Repository (WOPR) link below. These are 100m resolution gridded population estimates using customized methods ("bottom-up" and/or "top-down") developed for the latest data available from each country. They can also be visualised and explored through the woprVision App.
    The remaining datasets in the links below are produced using the "top-down" method, with either the unconstrained or constrained top-down disaggregation method used. Please make sure you read the Top-down estimation modelling overview page to decide on which datasets best meet your needs. Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 3 and 30 arc-seconds (approximately 100m and 1km at the equator, respectively):

    - Unconstrained individual countries 2000-2020 ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020.
    - Unconstrained individual countries 2000-2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019)
    -Unconstrained individual countries 2000-2020 UN adjusted ( 1km resolution ): Consistent 1km resolution population count datasets created using unconstrained top-down methods for all countries of the World for each year 2000-2020 and adjusted to match United Nations national population estimates (UN 2019).
    -Unconstrained global mosaics 2000-2020 ( 1km resolution ): Mosaiced 1km resolution versions of the "Unconstrained individual countries 2000-2020" datasets.
    -Constrained individual countries 2020 ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020.
    -Constrained individual countries 2020 UN adjusted ( 100m resolution ): Consistent 100m resolution population count datasets created using constrained top-down methods for all countries of the World for 2020 and adjusted to match United Nations national population estimates (UN 2019).

    Older datasets produced for specific individual countries and continents, using a set of tailored geospatial inputs and differing "top-down" methods and time periods are still available for download here: Individual countries and Whole Continent.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

  7. India - Population Density

    • data.amerigeoss.org
    geotiff
    Updated Jun 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2022). India - Population Density [Dataset]. https://data.amerigeoss.org/gl/dataset/worldpop-population-density-for-india
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    India
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  8. World Population by Countries (2025)

    • kaggle.com
    zip
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samith Chimminiyan (2025). World Population by Countries (2025) [Dataset]. https://www.kaggle.com/datasets/samithsachidanandan/world-population-by-countries-2025
    Explore at:
    zip(9000 bytes)Available download formats
    Dataset updated
    Jan 23, 2025
    Authors
    Samith Chimminiyan
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    World
    Description

    Description

    This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.

    Attribute Information

    • Rank : Country Rank by Population.
    • Country : Name of the Country.
    • Population(2024) : Current Population of each Country.
    • Yearly Change : Percentage Yearly Change in Population.
    • Net Change : Net change in the Population.
    • Density (P/Km²) : Population density (population per square km)
    • Land Area(Km²) : Total land area of the Country.
    • Migrants (net) : Total number of migrants.
    • Fertility Rate : Fertility rate
    • Median Age : Median age of the population
    • Urban Pop % : Percentage of urban population
    • World Share : Share to the word with population.

    Acknowledgements

    https://www.worldometers.info/world-population/population-by-country/

    Image by Gerd Altmann from Pixabay

  9. d

    Census Data

    • catalog.data.gov
    • data.globalchange.gov
    • +3more
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Bureau of the Census (2024). Census Data [Dataset]. https://catalog.data.gov/dataset/census-data
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    U.S. Bureau of the Census
    Description

    The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.

  10. I

    India Census: Population: by Religion: Muslim: Urban

    • ceicdata.com
    Updated Apr 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). India Census: Population: by Religion: Muslim: Urban [Dataset]. https://www.ceicdata.com/en/india/census-population-by-religion/census-population-by-religion-muslim-urban
    Explore at:
    Dataset updated
    Apr 7, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2001 - Mar 1, 2011
    Area covered
    India
    Variables measured
    Population
    Description

    India Census: Population: by Religion: Muslim: Urban data was reported at 68,740,419.000 Person in 2011. This records an increase from the previous number of 49,393,496.000 Person for 2001. India Census: Population: by Religion: Muslim: Urban data is updated yearly, averaging 59,066,957.500 Person from Mar 2001 (Median) to 2011, with 2 observations. The data reached an all-time high of 68,740,419.000 Person in 2011 and a record low of 49,393,496.000 Person in 2001. India Census: Population: by Religion: Muslim: Urban data remains active status in CEIC and is reported by Census of India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE001: Census: Population: by Religion.

  11. world_population

    • kaggle.com
    zip
    Updated Feb 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    farzam ajili (2023). world_population [Dataset]. https://www.kaggle.com/datasets/farzamajili/world-population
    Explore at:
    zip(16061 bytes)Available download formats
    Dataset updated
    Feb 8, 2023
    Authors
    farzam ajili
    Area covered
    World
    Description

    Context The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion in 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growing more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc.

  12. I

    India Population: Census: Age: 35 to 39 Year

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Population: Census: Age: 35 to 39 Year [Dataset]. https://www.ceicdata.com/en/india/census-population-by-age-group/population-census-age-35-to-39-year
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 1991 - Mar 1, 2011
    Area covered
    India
    Variables measured
    Population
    Description

    India Population: Census: Age: 35 to 39 Year data was reported at 85,140.684 Person th in 03-01-2011. This records an increase from the previous number of 70,574.000 Person th for 03-01-2001. India Population: Census: Age: 35 to 39 Year data is updated decadal, averaging 70,574.000 Person th from Mar 1991 (Median) to 03-01-2011, with 3 observations. The data reached an all-time high of 85,140.684 Person th in 03-01-2011 and a record low of 52,399.000 Person th in 03-01-1991. India Population: Census: Age: 35 to 39 Year data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAD001: Census: Population: by Age Group.

  13. w

    Global Financial Inclusion (Global Findex) Database 2021 - India

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Dec 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - India [Dataset]. https://microdata.worldbank.org/index.php/catalog/4653
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    India
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    Excluded populations living in Northeast states and remote islands and Jammu and Kashmir. The excluded areas represent less than 10 percent of the total population.

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for India is 3000.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  14. m

    Population, ages 7-11, total - India

    • macro-rankings.com
    csv, excel
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Population, ages 7-11, total - India [Dataset]. https://www.macro-rankings.com/india/population-ages-7-11-total
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Jun 12, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Time series data for the statistic Population, ages 7-11, total and country India. Indicator Definition:Population, ages 7-11, total is the total population age 7-11.The indicator "Population, ages 7-11, total" stands at 124.35 Million as of 12/31/2015, the highest value since 12/31/2008. Regarding the One-Year-Change of the series, the current value constitutes an increase of 0.0193 percent compared to the value the year prior.The 1 year change in percent is 0.0193.The 3 year change in percent is 0.1334.The 5 year change in percent is 0.1626.The 10 year change in percent is 0.0828.The Serie's long term average value is 119.00 Million. It's latest available value, on 12/31/2015, is 4.50 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/1990, to it's latest available value, on 12/31/2015, is +19.89%.The Serie's change in percent from it's maximum value, on 12/31/2007, to it's latest available value, on 12/31/2015, is -0.0681%.

  15. I

    India Vital Statistics: Natural Growth Rate: per 1000 Population

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Vital Statistics: Natural Growth Rate: per 1000 Population [Dataset]. https://www.ceicdata.com/en/india/vital-statistics/vital-statistics-natural-growth-rate-per-1000-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    India
    Variables measured
    Vital Statistics
    Description

    India Vital Statistics: Natural Growth Rate: per 1000 Population data was reported at 13.500 NA in 2020. This records a decrease from the previous number of 13.800 NA for 2019. India Vital Statistics: Natural Growth Rate: per 1000 Population data is updated yearly, averaging 18.500 NA from Dec 1970 (Median) to 2020, with 51 observations. The data reached an all-time high of 22.000 NA in 1971 and a record low of 13.500 NA in 2020. India Vital Statistics: Natural Growth Rate: per 1000 Population data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under Global Database’s India – Table IN.GAH001: Vital Statistics.

  16. Countries with the most Facebook users 2024

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Countries with the most Facebook users 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Which county has the most Facebook users?

                  There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
    
                  Facebook – the most used social media
    
                  Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
    
                  Facebook usage by device
                  As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
    
  17. I

    India Census: Population: by Religion: Hindu: Male

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Census: Population: by Religion: Hindu: Male [Dataset]. https://www.ceicdata.com/en/india/census-population-by-religion/census-population-by-religion-hindu-male
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2001 - Mar 1, 2011
    Area covered
    India
    Variables measured
    Population
    Description

    India Census: Population: by Religion: Hindu: Male data was reported at 498,306,968.000 Person in 2011. This records an increase from the previous number of 428,678,554.000 Person for 2001. India Census: Population: by Religion: Hindu: Male data is updated yearly, averaging 463,492,761.000 Person from Mar 2001 (Median) to 2011, with 2 observations. The data reached an all-time high of 498,306,968.000 Person in 2011 and a record low of 428,678,554.000 Person in 2001. India Census: Population: by Religion: Hindu: Male data remains active status in CEIC and is reported by Census of India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE001: Census: Population: by Religion.

  18. India_census_dataset

    • kaggle.com
    zip
    Updated Jan 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sachin Balhara (2025). India_census_dataset [Dataset]. https://www.kaggle.com/datasets/sbalharabalhara/india-census-dataset
    Explore at:
    zip(52999 bytes)Available download formats
    Dataset updated
    Jan 6, 2025
    Authors
    Sachin Balhara
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    India
    Description

    India Census Dataset

    This dataset provides comprehensive census data at the district level for India. It includes detailed demographic, religious, educational, and workforce-related attributes, making it a rich resource for socio-economic analysis.

    1. Columns and Descriptions

    A. Basic Information

    District_code: A unique numeric code for each district. State_name: Name of the state to which the district belongs. District_name: Name of the district.

    B. Population Data

    Population: Total population of the district. Male: Total male population in the district. Female: Total female population in the district.

    C. Literacy Data

    Literate: Total number of literate individuals in the district.

    D. Workforce Data

    Workers: Total number of workers in the district. Male_Workers: Total number of male workers in the district. Female_Workers: Total number of female workers in the district. Cultivator_Workers: Number of workers engaged as cultivators. Agricultural_Workers: Number of workers engaged in agricultural labor. Household_Workers: Number of workers engaged in household industries.

    E. Religion Data

    Hindus: Total number of Hindus in the district. Muslims: Total number of Muslims in the district. Christians: Total number of Christians in the district. Sikhs: Total number of Sikhs in the district. Buddhists: Total number of Buddhists in the district. Jains: Total number of Jains in the district.

    F. Education Data

    Secondary_Education: Number of individuals with secondary education. Higher_Education: Number of individuals with higher education qualifications. Graduate_Education: Number of individuals with graduate-level education.

    G. Age Group Data

    Age_Group_0_29: Population in the age group 0–29 years. Age_Group_30_49: Population in the age group 30–49 years. Age_Group_50: Population aged 50 years and above.

    2. Key Highlights

    Number of Districts: 640 Number of Columns: 25 Non-null Values: All columns are complete with no missing data. Detailed breakdown of population by gender, age group, literacy levels, and workforce distribution. Religious composition and education statistics are also included for each district.

    3. Potential Use Cases

    Data Analysis and Visualization:

    Explore patterns in population distribution, literacy rates, workforce composition, and religious demographics. Machine Learning Applications:

    Build predictive models to classify districts or forecast demographic trends. Social Research:

    Investigate correlations between education levels, workforce participation, and religion. Policy Planning:

    Help policymakers target specific demographics or regions for intervention. Educational Insights:

    Analyze the impact of education levels on workforce participation or literacy.

    4. Dataset Overview

    Total Rows: 640 Total Columns: 25 This dataset provides a unique opportunity to understand India's socio-economic and demographic composition at a granular district level.

  19. I

    India Projection: Population: 10 Years

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Projection: Population: 10 Years [Dataset]. https://www.ceicdata.com/en/india/population-projection-10-years-by-age-group/projection-population-10-years
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Mar 1, 2031
    Area covered
    India
    Variables measured
    Population
    Description

    India Projection: Population: 10 Years data was reported at 1,522,552,390.000 Person in 2031. This records an increase from the previous number of 1,372,535,298.000 Person for 2021. India Projection: Population: 10 Years data is updated yearly, averaging 1,447,543,844.000 Person from Mar 2021 (Median) to 2031, with 2 observations. The data reached an all-time high of 1,522,552,390.000 Person in 2031 and a record low of 1,372,535,298.000 Person in 2021. India Projection: Population: 10 Years data remains active status in CEIC and is reported by CEIC Data. The data is categorized under India Premium Database’s Demographic – Table IN.GAI002: Population Projection: 10 Years: by Age Group.

  20. T

    India Worker Population Ratio

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2019). India Worker Population Ratio [Dataset]. https://tradingeconomics.com/india/employment-rate
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Jul 10, 2019
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2012 - Oct 31, 2025
    Area covered
    India
    Description

    Employment Rate in India increased to 52.40 percent in September from 52.20 percent in August of 2025. This dataset provides - India Worker Population Ratio- actual values, historical data, forecast, chart, statistics, economic calendar and news.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rajarshi Datta (2023). Population of India [Dataset]. https://www.kaggle.com/datasets/rdatta871/population-of-india
Organization logo

Population of India

The dataset consists of India's Population by gender, sex & region.

Explore at:
zip(2072 bytes)Available download formats
Dataset updated
Jun 23, 2023
Authors
Rajarshi Datta
License

Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically

Area covered
India
Description

India is the most populous country in the world with one-sixth of the world's population. According to official estimates in 2022, India's population stood at over 1.42 billion.

This dataset contains the population distribution by state, gender, sex & region.

The file is in .csv format thus it is accessible everywhere.

Search
Clear search
Close search
Google apps
Main menu