14 datasets found
  1. a

    Population 2021 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Mar 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Population 2021 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/e6d7f80e712544b5a06b47047ca6d02a
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  2. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  3. d

    Census_sum_15

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Census_sum_15 [Dataset]. https://catalog.data.gov/dataset/census-sum-15
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The GIS layer "Census_sum_15" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2015 range-wide census. The USGS range-wide sea otter census has been undertaken twice a year since 1982, once in May and once in October, using consistent methodology involving both ground-based and aerial-based counts. The spring census is considered more accurate than the fall count, and provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2015). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California.

  4. Measures of urban form and mobility energy use indices for each census tract...

    • zenodo.org
    • datadryad.org
    bin, csv
    Updated Apr 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marco Miotti; Marco Miotti; Zachary Needell; Rishee Jain; Zachary Needell; Rishee Jain (2023). Measures of urban form and mobility energy use indices for each census tract in the United States [Dataset]. http://doi.org/10.5061/dryad.bvq83bkd4
    Explore at:
    csv, binAvailable download formats
    Dataset updated
    Apr 27, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marco Miotti; Marco Miotti; Zachary Needell; Rishee Jain; Zachary Needell; Rishee Jain
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset contains data on urban form (the configuration of the built environment) for each census tract in the United States, encompassing density (destination access), land use diversity (entropy), road network properties, road network capacity relative to the surrounding population, and public transit access. Metrics are measured around the centroid of each census tract in multiple given radii. The data also contain other publicly available metrics for each census tract that may be helpful, such as each tract's associated city, zipcode, and county name, area and water area, and centroid coordinates. Certain measures resemble those available in the U.S. Environmental Protection Agencies' Smart Location database or were derived from them, while others were compiled using additional data sources and the statistical model presented in the associated main article. Specifically, the data presented here contain travel energy use indices for each census tract, reflecting the estimated difference in daily land-based mobility energy use per capita relative to the baseline (the U.S. average) as a result of that environment's particular urban form.

  5. Data from: Wildfire Risk to Communities: Spatial datasets of wildfire risk...

    • figshare.com
    bin
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joe H. Scott; April M. Brough; Julie W. Gilbertson-Day; Gregory K. Dillon; Christopher Moran (2025). Wildfire Risk to Communities: Spatial datasets of wildfire risk for populated areas in the United States [Dataset]. http://doi.org/10.2737/RDS-2020-0060
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    Joe H. Scott; April M. Brough; Julie W. Gilbertson-Day; Gregory K. Dillon; Christopher Moran
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place. Related datasets representing components of risk across the entire landscape are available in a separate data publication (Scott et al. 2020, https://doi.org/10.2737/RDS-2020-0016). Likewise, transmitted risk to housing units from the source locations where damaging fires originate will be also be delivered in a separate publication.

    Vegetation and wildland fuels data from LANDFIRE 2014 (version 1.4.0) form the foundation for wildfire hazard and risk data included in the Wildfire Risk to Communities datasets. As such, the data presented here reflect wildfire hazard from landscape conditions as of the end of 2014. National wildfire hazard datasets of annual burn probability and fire intensity were generated from the LANDFIRE 2014 data by the USDA Forest Service, Rocky Mountain Research Station (Short et al. 2020) using the large fire simulation system (FSim). These national datasets produced with FSim have a relatively coarse cell size of 270 meters (m). To bring these datasets down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30-m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability and intensity into developed areas represented in LANDFIRE fuels data as non-burnable. Additional methodology documentation is provided with the data publication download.

    The data products in this publication that represent where people live reflect 2018 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Microsoft (version 1.1), LandScan 2018 where building footprint data were unavailable, USGS building coverage data, and land cover data from LANDFIRE.

    The specific raster datasets included in this publication include:

    Housing Unit Density (HUDen): HUDen is a nationwide raster of housing-unit density measured in housing units per square kilometer. The HUDen raster was generated using population and housing-unit count and data from the U.S. Census Bureau, building footprint data from Microsoft, and land cover data from LANDFIRE. In Alaska, LandScan 2018 data were used to identify approximate housing unit locations because Microsoft data were not available across the whole state.

    Population Density (PopDen): PopDen is a nationwide raster of residential population density measured in persons per square kilometer. The PopDen raster was generated using population count data from the U.S. Census Bureau, building footprint data from Microsoft, and land cover data from LANDFIRE. In Alaska, LandScan 2018 data were used to identify approximate population locations because Microsoft data were not available across the whole state.

    Building Coverage (BuildingCover): BuildingCover is a raster of building density measured as the percent cover of buildings within an approximately 5 acre area around each pixel. It includes all buildings and can be used to complement the HUDen raster, which just reflects residential buildings. Building coverage was generated using building footprint data from Microsoft (v1.1), building coverage data from USGS, and land cover data from LANDFIRE. Building Coverage is not available in Alaska because source data were not available across the whole state.

    Building Exposure Type (BuildingExposure): Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. The BuildingExposure layer delineates whether buildings at each pixel are directly exposed to wildfire from adjacent wildland vegetation (pixel value of 1), indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition (pixel values between 0 and 1), or not exposed to wildfire due to distance from direct and indirect ignition sources (pixel value of 0). It is similar to Exposure Type in the companion data publication, RDS-2020-0016, but just where HUDen > 0 or BuildingCover > 0. Pixels where both HUDen and BuildingCover rasters are zero are NoData in the BuildingExposure raster.

    Housing Unit Exposure (HUExposure): HUExposure is the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year. It is calculated as the product of wildfire likelihood and housing unit count. Pixels where the HUDen raster is zero are NoData in the HUExposure raster.

    Housing Unit Impact (HUImpact): HUImpact is an index that represents the relative potential impact of fire to housing units at any pixel, if a fire occurs there. It incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire. HUImpact does not include the likelihood of fire occurring, and it does not reflect mitigations done to individual structures that would influence susceptibility. It is conceptually similar to Conditional Risk to Potential Structures in the companion data publication, RDS-2020-0016, but also incorporates housing unit count and exposure type. Pixels where the HUDen raster is zero are NoData in the HUImpact raster.

    Housing Unit Risk (HURisk): HURisk is an index that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density > 0. It is conceptually similar to Risk to Potential Structures (i.e., Risk to Homes) in the companion data publication, RDS-2020-0016, but also incorporates housing unit count. Pixels where the HUDen raster is zero are NoData in the HURisk raster.The geospatial data products described and distributed here are part of the Wildfire Risk to Communities project. This project was directed by Congress in the 2018 Consolidated Appropriations Act (i.e., 2018 Omnibus Act, H.R. 1625, Section 210: Wildfire Hazard Severity Mapping) to help U.S. communities understand components of their relative wildfire risk profile, the nature and effects of wildfire risk, and actions communities can take to mitigate risk. These data represent the first time wildfire risk to communities has been mapped nationally with consistent methodology. They provide foundational information for comparing the relative wildfire risk among populated communities in the United States.See the Wildfire Risk to Communities website at https://www.wildfirerisk.org for complete project information. The suite of seven raster layers included in this publication are downloadable as zip files by U.S. state. Population Density, Building Coverage, Housing Unit Density, Housing Unit Impact, and Housing Unit Risk are also downloadable as national datasets. National datasets of Housing Unit Exposure and Building Exposure Type are too large for download, but users can request them through the point of contact listed in this metadata document.

  6. Data from: SGS-LTER Long-term Monitoring Project: Carnivore Scat Count on...

    • catalog.data.gov
    • portal.edirepository.org
    • +3more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). SGS-LTER Long-term Monitoring Project: Carnivore Scat Count on the Central Plains Experimental Range, Nunn, Colorado, USA 1997 -2006, , ARS Study Number 98 [Dataset]. https://catalog.data.gov/dataset/sgs-lter-long-term-monitoring-project-carnivore-scat-count-on-the-central-plains-experimen-eb733
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Area covered
    Nunn, Colorado, United States
    Description

    This data package was produced by researchers working on the Shortgrass Steppe Long Term Ecological Research (SGS-LTER) Project, administered at Colorado State University. Long-term datasets and background information (proposals, reports, photographs, etc.) on the SGS-LTER project are contained in a comprehensive project collection within the Digital Collections of Colorado (http://digitool.library.colostate.edu/R/?func=collections&collection_id=3429). The data table and associated metadata document, which is generated in Ecological Metadata Language, may be available through other repositories serving the ecological research community and represent components of the larger SGS-LTER project collection. Additional information and referenced materials can be found: http://hdl.handle.net/10217/83392 Carnivores are among the most conspicuous, charismatic and economically important mammals in shortgrass steppe, yet relatively is little is known about their populations or of the ecological factors that determine their distribution and abundance, in part because densities tend to be low. Mammalian carnivores represent the top predators in grassland food webs, consuming rodents, rabbits, young ungulates and other small vertebrates. In addition, shortgrass steppe is the primary habitat of the swift fox (Vulpes velox), a species of special conservation concern throughout most of its range. Fox populations are thought to be limited by predation from coyotes (Canis latrans), the most common carnivore in these grasslands and a species of interest, both for its ecological roles and well as a target species for human exploitation, ie hunting and predator control. In 1994, we implemented a low-intensity sampling scheme to monitor long-term changes in relative abundance of mammalian carnivores and help us examine interactions between these predators and their small mammal prey, including rodents and rabbits. We estimated relative abundance of carnivores using scat surveys along a fixed route. Four times each year (January, April, July, October), we drove a 32-km route consisting of pasture two-track and gravel roads on the CPER. We first drove the route to remove all scats (‘PRE-census’); we then returned ~14 d later and counted the number of scats deposited on the route (‘CENSUS’). We recorded the species that deposited the scat and estimated the scat age based on external appearance (4 categories). Beginning in 1997, we recorded the vegetation (habitat) type and topographic position of all scat locations to describe habitat use. Latrines are indicated by locations containing multiple scats. We used the ‘CENSUS’ data to calculate a scat index, defined as the number of scats deposited per km of road per night. The scat index can be used to estimate population density using equations for coyotes (Knowlton 1982) and swift foxes (Schauster et al. 2002) that described the rate of scat deposition from surveys where density was known. To estimate density and compare trends among seasons and years, we omitted scats collected along the 8.3 km of the route that occurred on gravel county roads. These roads are graded sporadically, sometimes between pre-census and census surveys, which tended to remove scats. (NOTE: these observations are NOT omitted in the dataset). Resources in this dataset:Resource Title: Website Pointer to html file. File Name: Web Page, url: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sgs&identifier=135 Webpage with information and links to data files for download

  7. c

    Data from: LBA-ECO ND-01 Streamwater and Watershed Characteristics,...

    • s.cnmilf.com
    • datasets.ai
    • +9more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ORNL_DAAC (2025). LBA-ECO ND-01 Streamwater and Watershed Characteristics, Rondonia, Brazil: 1998-1999 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/lba-eco-nd-01-streamwater-and-watershed-characteristics-rondonia-brazil-1998-1999-f015e
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    ORNL_DAAC
    Area covered
    State of Rondônia, Brazil
    Description

    This data set provides the results of (1) synoptic streamwater sampling and analyses from numerous sites across Rondonia and (2) corresponding watershed characteristics derived from remote sensing and historical/available data sources. Sixty streams, in both forested and non-forested sites, were sampled once during the dry season in August of 1998 and 49 of the same streams were sampled again during the wet season in January-February of 1999. Analyses included sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), silica (Si), chloride (Cl), sulfate, pH, and acid neutralizing capacity. Watershed characteristics, including soil cation content, pH, watershed lithology, area, percent deforested, and urban watershed population density, were derived and calculated from digitized soil maps and available soil profile analyses, digitized topographic maps, land use mosaics from Landsat Thematic Mapper (TM) images, and Brazilian census data. The objective of the study was to determine the relative influence of watershed soil exchangeable cation content, rock type, deforestation, and urban population density on stream concentrations of base cations, dissolved silicon, chloride and sulfate in both the dry and wet seasons in a humid tropical region undergoing regional land use transformation. There are three comma-delimited data files with this data set.

  8. l

    Local Employment Dynamics (LED) for CDBG Grantee Areas

    • data.lojic.org
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jul 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Local Employment Dynamics (LED) for CDBG Grantee Areas [Dataset]. https://data.lojic.org/datasets/712dde012f434128808c8a05e29b38c1
    Explore at:
    Dataset updated
    Jul 31, 2023
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    The Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Community Development Block Grant (CDBG) Program grantee areas spatial dataset for FY2019. Established in 1974, the Community Development Block Grant Program provides annual grant funding to local and state governments to address a wide range of unique community development needs.

    HUD determines the amount of each grant by using a formula comprised of several measures of community need, including the extent of poverty, population, housing density, age of housing, and population growth relative to other metropolitan areas.

    The annual CDBG appropriation is allocated among states and local jurisdictions categorized as "entitlement" and "non-entitlement" communities respectively. Entitlement communities are comprised of the principal cities of Metropolitan Statistical Areas (MSAs); metropolitan cities with populations of at least 50,000; and qualified urban counties with a population of 200,000 or more (excluding the populations of entitlement cities). Non-entitlement communities receive CDBG funding from their respective states in accordance with requirements that state.

    To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for CDBG Grantee Areas

    Date of Coverage: CDBG-2021/LED-2018

  9. d

    Annual California Sea Otter Census: 2019 Census Summary Shapefile

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Annual California Sea Otter Census: 2019 Census Summary Shapefile [Dataset]. https://catalog.data.gov/dataset/annual-california-sea-otter-census-2019-census-summary-shapefile
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The GIS shapefile Census_sum_2019 provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2019 range-wide census. The USGS spring range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square kilometer of habitat), linear density (otters per kilometer of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2019). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60 meter isobath: this depth range includes over 99 percent of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined by combining independent otters within a moving window of 10-kilometer stretches of coastline (as measured along the 10-meter bathymetric contour; 20 contiguous ATOS intervals each) and taking the northern and southern ATOS values, respectively, of the northernmost and southernmost stretches in which at least five otters were counted for at least 2 consecutive spring surveys during the last 3 years. The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012

  10. c

    Annual California Sea Otter Census: 2018 Census Summary Shapefile

    • s.cnmilf.com
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Annual California Sea Otter Census: 2018 Census Summary Shapefile [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/annual-california-sea-otter-census-2018-census-summary-shapefile
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    The GIS shapefile "Census summary of southern sea otter 2018" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2018 range-wide census. The USGS spring range-wide sea otter census has been undertaken each year since 1982, using consistent methodology involving both ground-based and aerial-based counts. The spring census provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2018). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T., D. P. Costa , J. A. Estes , and N. Wieringa. 2007. Individual dietary specialization and dive behavior in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012

  11. d

    Annual California Sea Otter Census—1985-2014 Spring Census Summary

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Annual California Sea Otter Census—1985-2014 Spring Census Summary [Dataset]. https://catalog.data.gov/dataset/annual-california-sea-otter-census1985-2014-spring-census-summary
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This dataset represents an archived record of annual California sea otter surveys from 1985-2014. Survey procedures involve counting animals during the "spring survey" -- generally beginning in late April or early May and usually ending in late May early June but may extend into early July, depending on weather conditions. Annual surveys are organized by survey year and within each year, three shapefiles are included: census summary of southern sea otter, extra limit counts of southern sea otter, and range extent of southern sea otter. The surveys, conducted cooperatively by scientists of the U.S. Geological Survey, California Department of Fish and Wildlife, U.S. Fish and Wildlife Service and Monterey Bay Aquarium with the help of experienced volunteers, cover about 375 miles of California coast, from Half Moon Bay south to Santa Barbara. The information gathered may be used by federal and state wildlife agencies in making decisions about the management of this threatened marine mammal. These data, in conjunction with findings from several more in-depth studies, may also provide the necessary information to assess female reproductive rates and changes in reproductive success of the California sea otter population through time. For more information on annual California sea otter surveys, including most current surveys and associated data and corresponding USGS Data Series reports, go to: https://www.sciencebase.gov/catalog/item/5601b6dae4b03bc34f5445ec The GIS shapefile "Census summary of southern sea otter" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring range-wide census. This census has been undertaken each year using consistent methodology involving both ground-based and aerial-based counts. This range-wide census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California. Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al. 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. The GIS shapefile "Extra limit counts of southern sea otters" is a point layer representing the locations of sea otter sightings that fall outside the officially recognized range of the southern sea otter in mainland California. These data were collected during the spring range-wide census. Sea otter distribution in California (the mainland range) is considered to comprise a band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits as defined above. However, a few individual sea otters (almost always males) can frequently be found outside this officially recognized range, and these "extra-limital" animals are also counted during the census. The GIS shapefile "Range extent of southern sea otters" is a simple polyline representing the geographic distribution of the southern sea otter in mainland California, based on data collected during the spring range-wide census. The spring 2011 survey was incomplete due to weather conditions and there were no “extra-limital” sightings of otters during the spring 1992 survey, hence no data or shapefile for “Extra limit counts 1992.” For ease of access, an additional CSV file of the census summary from 1985-2014 is provided: "AnnualCaliforniaSeaOtter_Census_summary_1985_2014.csv" References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012

  12. d

    Census summary of southern sea otter 2016

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Census summary of southern sea otter 2016 [Dataset]. https://catalog.data.gov/dataset/census-summary-of-southern-sea-otter-2016
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    The GIS shapefile "Census summary of southern sea otter 2016" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2016 range-wide census. The USGS range-wide sea otter census has been undertaken twice a year since 1982, once in May and once in October, using consistent methodology involving both ground-based and aerial-based counts. The spring census is considered more accurate than the fall count, and provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2016). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California.

  13. Population estimates, quarterly

    • www150.statcan.gc.ca
    • moropho.click
    • +3more
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Population estimates, quarterly [Dataset]. http://doi.org/10.25318/1710000901-eng
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Estimated number of persons by quarter of a year and by year, Canada, provinces and territories.

  14. a

    Wildfire Risk - Housing Unit Density - USFS

    • rogue-all-lands-explorer-osugisci.hub.arcgis.com
    Updated Mar 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Oregon Forest Restoration Collaborative (2024). Wildfire Risk - Housing Unit Density - USFS [Dataset]. https://rogue-all-lands-explorer-osugisci.hub.arcgis.com/datasets/c231fffeb6274ca69c757280b604af48
    Explore at:
    Dataset updated
    Mar 9, 2024
    Dataset authored and provided by
    Southern Oregon Forest Restoration Collaborative
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    USFS Enterprise Content, RDW_Wildfire-RMRS_WRC_HousingUnitDensityThis dataset is the Housing Unit Density (HUDen) raster for the United States. It is part of the data publication Wildfire Risk to Communities: Spatial datasets of wildfire risk for populated areas in the United States. HUDen is a nationwide raster of housing-unit density measured in housing units per square kilometer. It reflects 2018 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Microsoft (version 1.1), LandScan where building footprint data were unavailable, and land cover data from LANDFIRE. Metadata and Downloads.Note:�Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  15. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Georgia Association of Regional Commissions (2023). Population 2021 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/e6d7f80e712544b5a06b47047ca6d02a

Population 2021 (all geographies, statewide)

Explore at:
Dataset updated
Mar 9, 2023
Dataset provided by
The Georgia Association of Regional Commissions
Authors
Georgia Association of Regional Commissions
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

Search
Clear search
Close search
Google apps
Main menu