Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.
Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).
Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.
Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.
Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas
Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:
1 Large Central Metro
2 Large Fringe Metro
3 Medium Metro
4 Small Metro
5 Micropolitan
6 Non-Core (Rural)
American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:
Age 65 - “Age65”
1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)
Non-Hispanic, Asian - “NHAA”
1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)
Non-Hispanic, American Indian/Alaskan Native - “NHIA”
1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)
Non-Hispanic, Black - “NHBA”
1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)
Hispanic - “HISP”
1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)
Population in Poverty - “Pov”
1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)
Population Uninsured- “Unins”
1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)
Average Household Size - “HH”
1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)
Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:
1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)
Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:
1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)
This map displays data from the Selected Economic Indicators (DP03) dataset from the 2010 American Community Survey 5-Yr Estimates, U.S. Census Bureau. Data is shown at the level of Census Tract, County, and Small Area (aggregation of Census Tracts developed by the New Mexico Department of Health). Measuring poverty is a topic of much current discussion. See the following links: A Different Way to Measure Poverty - http://www.sanders.senate.gov/imo/media/image/census.jpg"Few topics in American society have more myths and stereotypes surrounding them than poverty, misconceptions that distort both our politics and our domestic policy making."They include the notion that poverty affects a relatively small number of Americans, that the poor are impoverished for years at a time, that most of those in poverty live in inner cities, that too much welfare assistance is provided and that poverty is ultimately a result of not working hard enough. Although pervasive, each assumption is flat-out wrong." -Mark Rank, Professor of Social Welfare at Washington University: http://opinionator.blogs.nytimes.com/2013/11/02/poverty-in-america-is-mainstream/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: A one third reduction of premature deaths from non-communicable diseases by 2030 is a target of the United Nations Sustainable Development Goal for Health. Unlike in other developed nations, premature mortality in the United States (US) is increasing. The state of Oklahoma suffers some of the greatest rates in the US of both all-cause mortality and overdose deaths. Medicaid opioids are associated with overdose death at the patient level, but the impact of this exposure on population all-cause mortality is unknown. The objective of this study was to look for an association between Medicaid spending, as proxy measure for Medicaid opioid exposure, and all-cause mortality rates in the 45–54-year-old American Indian/Alaska Native (AI/AN45-54) and non-Hispanic white (NHW45-54) populations.Methods: All-cause mortality rates were collected from the US Centers for Disease Control & Prevention Wonder Detailed Mortality database. Annual per capita (APC) Medicaid spending, and APC Medicare opioid claims, smoking, obesity, and poverty data were also collected from existing databases. County-level multiple linear regression (MLR) analyses were performed. American Indian mortality misclassification at death is known to be common, and sparse populations are present in certain counties; therefore, the two populations were examined as a combined population (AI/NHW45-54), with results being compared to NHW45-54 alone.Results: State-level simple linear regressions of AI/NHW45-54 mortality and APC Medicaid spending show strong, linear correlations: females, coefficient 0.168, (R2 0.956; P < 0.0001; CI95 0.15, 0.19); and males, coefficient 0.139 (R2 0.746; P < 0.0001; CI95 0.10, 0.18). County-level regression models reveal that AI/NHW45-54 mortality is strongly associated with APC Medicaid spending, adjusting for Medicare opioid claims, smoking, obesity, and poverty. In females: [R2 0.545; (F)P < 0.0001; Medicaid spending coefficient 0.137; P < 0.004; 95% CI 0.05, 0.23]. In males: [R2 0.719; (F)P < 0.0001; Medicaid spending coefficient 0.330; P < 0.001; 95% CI 0.21, 0.45].Conclusions: In Oklahoma, per capita Medicaid spending is a very strong risk factor for all-cause mortality in the combined AI/NHW45-54 population, after controlling for Medicare opioid claims, smoking, obesity, and poverty.
Objective Gains in life expectancy have faltered in several high-income countries in recent years. We aim to compare life expectancy trends in Scotland to those seen internationally, and to assess the timing of any recent changes in mortality trends for Scotland. Setting Austria, Croatia, Czech Republic, Denmark, England & Wales, Estonia, France, Germany, Hungary, Iceland, Israel, Japan, Korea, Latvia, Lithuania, Netherlands, Northern Ireland, Poland, Scotland, Slovakia, Spain, Sweden, Switzerland, USA. Methods We used life expectancy data from the Human Mortality Database (HMD) to calculate the mean annual life expectancy change for 24 high-income countries over five-year periods from 1992 to 2016, and the change for Scotland for five-year periods from 1857 to 2016. One- and two-break segmented regression models were applied to mortality data from National Records of Scotland (NRS) to identify turning points in age-standardised mortality trends between 1990 and 2018. Results In 2012-2016 life expectancies in Scotland increased by 2.5 weeks/year for females and 4.5 weeks/year for males, the smallest gains of any period since the early 1970s. The improvements in life expectancy in 2012-2016 were smallest among females (<2.0 weeks/year) in Northern Ireland, Iceland, England & Wales and the USA and among males (<5.0 weeks/year) in Iceland, USA, England & Wales and Scotland. Japan, Korea, and countries of Eastern Europe have seen substantial gains in the same period. The best estimate of when mortality rates changed to a slower rate of improvement in Scotland was the year to 2012 Q4 for males and the year to 2014 Q2 for females. Conclusion Life expectancy improvement has stalled across many, but not all, high income countries. The recent change in the mortality trend in Scotland occurred within the period 2012-2014. Further research is required to understand these trends, but governments must also take timely action on plausible contributors. Description of methods used for collection/generation of data: The HMD has a detailed methods protocol available here: https://www.mortality.org/Public/Docs/MethodsProtocol.pdf The ONS and NRS also have similar methods for ensuring data consistency and quality assurance. Methods for processing the data: The segmented regression was conducted using the 'segmented' package in R. The recommended references to this package and its approach are here: Vito M. R. Muggeo (2003). Estimating regression models with unknown break-points. Statistics in Medicine, 22, 3055-3071. Vito M. R. Muggeo (2008). segmented: an R Package to Fit Regression Models with Broken-Line Relationships. R News, 8/1, 20-25. URL https://cran.r-project.org/doc/Rnews/. Vito M. R. Muggeo (2016). Testing with a nuisance parameter present only under the alternative: a score-based approach with application to segmented modelling. J of Statistical Computation and Simulation, 86, 3059-3067. Vito M. R. Muggeo (2017). Interval estimation for the breakpoint in segmented regression: a smoothed score-based approach. Australian & New Zealand Journal of Statistics, 59, 311-322. Software- or Instrument-specific information needed to interpret the data, including software and hardware version numbers: The analyses were conducted in R version 3.6.1 and Microsoft Excel 2013. Please see README.txt for further information HMD international_updated Jan 2019.xlsx Comprises 20 worksheets, of which 14 contain data. These data are arranged by country and by year. Missing data codes: "" The tab 'contents and sources' provides descriptions of the data source and contents of each sheet. HMD Scotland time trend analysis.xlsx Comprises 5 worksheets, including a combination of data and charts. The sheet 'contents' describes the data source and contents of other sheets. The variables include year, life expectancy, and various measures of change in life expectancy Missing data codes: "" Segmented regression chart.xlsx Comprises 2 worksheets, 'Data' and 'Chart'. Variables within the 'data' worksheet include: Year 4 quarter rolling period ending Female observed mortality rate Female predicted by one-break model Female predicted by two-break model Male observed mortality rate Male predicted by one-break model Male predicted by two-break model Chart breakpoint indicator Missing data codes: (blank space) Summary findings from segmented regression.xlsx Excel workbook containing table 1 of paper 'summary of results of segmented regression by population group and model/test'
Explore comprehensive data on various indicators such as self-employment, female employment, average tariffs, net ODA provided, AIDS estimated deaths, fertility rate, school enrollment, GNI, gender parity index, agricultural support, poverty, and much more from the World Bank Millennium Development Goals dataset.
Self-employed, female (% of female employment), Average tariffs imposed by developed countries on agricultural products from developing countries (%), Net ODA provided to the least developed countries (% of donor GNI), AIDS estimated deaths (UNAIDS estimates), Fertility rate, total (births per woman), School enrollment, primary (% net), GNI, Atlas method (current US$), Average tariffs imposed by developed countries on clothing products from developing countries (%), School enrollment, primary (gross), gender parity index (GPI), Self-employed, total (% of total employment), Agricultural support estimate (% of GDP), Share of women in wage employment in the nonagricultural sector (% of total nonagricultural employment), Linear mixed-effect model estimates, Net ODA provided, total (current US$), School enrollment, secondary (gross), gender parity index (GPI), India, Bilateral, sector-allocable ODA to basic social services (% of bilateral ODA commitments), Average tariffs imposed by developed countries on clothing products from least developed countries (%), Bilateral ODA commitments that is untied (current US$), Qatar, Rural poverty gap at national poverty lines (%), GNI per capita, Atlas method (current US$), Urban poverty headcount ratio at national poverty lines (% of urban population), PPP conversion factor, private consumption (LCU per international $), Forest area (% of land area), Terrestrial protected areas (% of total land area), Poverty gap at national poverty lines (%), Annual, Proportion of seats held by women in national parliaments (%), Vulnerable employment, female (% of female employment), Contributing family workers, total (% of total employment), Net ODA provided, total (% of GNI), Total debt service (% of exports of goods, services and primary income), Total bilateral sector allocable ODA commitments (current US$), Average tariffs imposed by developed countries on textile products from least developed countries (%), Weighted Average, Net official development assistance received (current US$), Average tariffs imposed by developed countries on textile products from developing countries (%), Tuberculosis case detection rate (%, all forms), Oman, School enrollment, primary and secondary (gross), gender parity index (GPI), Prevalence of undernourishment (% of population), Population living in slums (% of urban population), Vulnerable employment, male (% of male employment), Debt service (PPG and IMF only, % of exports of goods, services and primary income), Ratio of school attendance rate of orphans to school attendance rate of non orphans, Weighted average, Net ODA received per capita (current US$), Population, total, Contributing family workers, male (% of male employment), Trade (% of GDP), Goods (excluding arms) admitted free of tariffs from least developed countries (% total merchandise imports excluding arms), Self-employed, male (% of male employment), PPP conversion factor, GDP (LCU per international $), Marine protected areas (% of territorial waters), Average tariffs imposed by developed countries on agricultural products from least developed countries (%), Pregnant women receiving prenatal care of at least four visits (% of pregnant women), Forest area (sq. km), Persistence to last grade of primary, total (% of cohort), Persistence to last grade of primary, female (% of cohort), Tuberculosis treatment success rate (% of new cases), Primary completion rate, total (% of relevant age group), School enrollment, tertiary (gross), gender parity index (GPI), Improved sanitation facilities (% of population with access), Poverty headcount ratio at national poverty lines (% of population), Net official development assistance and official aid received (current US$), Gross capital formation (% of GDP), Births attended by skilled health staff (% of total), Rural poverty headcount ratio at national poverty lines (% of rural population), Status under enhanced HIPC initiative, Children orphaned by HIV/AIDS, Vulnerable employment, total (% of total employment), Kuwait, Life expectancy at birth, total (years), Bahrain, Bilateral ODA commitments that is untied (% of bilateral ODA commitments), Persistence to last grade of primary, male (% of cohort), Bilateral, sector-allocable ODA to basic social services (current US$), Renewable internal freshwater resources per capita (cubic meters), Antiretroviral therapy coverage (% of people living with HIV), Pregnant women receiving prenatal care (%), Contributing family workers, female (% of female employment), Improved water source (% of population with access), Goods (excluding arms) admitted free of tariffs from developing countries (% total merchandise imports excluding arms), China, Total bilateral ODA commitments (current US$), Gap-filled total, Saudi Arabia, Adjusted net enrollment rate, primary (% of primary school age children), Reported cases of malaria, Annual freshwater withdrawals, total (% of internal resources), Net ODA received (% of GNI), Urban poverty gap at national poverty lines (%), Sum, Net ODA provided to the least developed countries (current US$), %
India, Qatar, Oman, Kuwait, Bahrain, China, Saudi Arabia
Follow data.kapsarc.org for timely data to advance energy economics research.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.
Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).
Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.
Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.
Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas
Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:
1 Large Central Metro
2 Large Fringe Metro
3 Medium Metro
4 Small Metro
5 Micropolitan
6 Non-Core (Rural)
American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:
Age 65 - “Age65”
1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)
Non-Hispanic, Asian - “NHAA”
1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)
Non-Hispanic, American Indian/Alaskan Native - “NHIA”
1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)
Non-Hispanic, Black - “NHBA”
1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)
Hispanic - “HISP”
1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)
Population in Poverty - “Pov”
1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)
Population Uninsured- “Unins”
1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)
Average Household Size - “HH”
1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)
Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:
1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)
Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:
1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)