8 datasets found
  1. a

    ROW Permit GIS Data Template

    • opendata-richardson.opendata.arcgis.com
    Updated Mar 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Richardson, Texas (2019). ROW Permit GIS Data Template [Dataset]. https://opendata-richardson.opendata.arcgis.com/datasets/3cd180fa4ff7409aae7fb07b9b72f1fd
    Explore at:
    Dataset updated
    Mar 25, 2019
    Dataset authored and provided by
    City of Richardson, Texas
    Area covered
    Description

    A Right-of-Way Construction Permit is required for any work performed within the City of Richardson's Right-of-Way or Easements. Work must be performed in accordance with local Ordinances and Right of Way Standard Construction Details. This zipfile contains a layer file and a file geodatabase with two feature classes. The 'Districts' polygon feature class is just for reference so that the applicant can determine which district the new asset is in (the layer file will have the saved symbology for ease of use). The 'WirelessFacility' point feature class is where the applicant will edit and input the new asset. There are domains on this feature class which will act as 'drop-downs' when editing.Be sure to unzip the file after downloading so that it can be viewed in ArcMap or ArcGIS Pro.For more information about the geodatabase download the ROW GIS Data Template Instructions.

  2. c

    Boundaries

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Dec 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Atlas – Landscape Content (2021). Boundaries [Dataset]. https://www.cacgeoportal.com/datasets/LandscapeTeam::boundaries-2
    Explore at:
    Dataset updated
    Dec 7, 2021
    Dataset authored and provided by
    Living Atlas – Landscape Content
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Named Landforms of the World version 2 (NLWv2) contains four sub-layers representing geomorphological landforms, provinces, divisions, and their respective cartographic boundaries. The latter supports map making, while the first three represent basic units, such as landforms, which comprise provinces, and provinces comprise divisions. NLW is a substantial update to World Named Landforms in both compilation method and the attributes that describe each landform. For more details, please refer to our paper, Named Landforms of the World: A Geomorphological and Physiographic Compilation, in Annals of the American Association of Geographers. July 2, 2025: We have made Named Landforms of the World v3 (NLWv3) available. Please explore this group containing all of the layers and data. NLWv2 will remain available. Landforms are commonly defined as natural features on the surface of the Earth. The National Geographic Society specifies terrain as the basis for landforms and lists four major types: mountains, hills, plateaus, and plains. Here, however, we define landforms in a richer way that includes properties relating to underlying geologic structure, erosional and depositional character, and tectonic setting and processes. These characteristics were asserted by Dr. Richard E. Murphy in 1968 in his map, titled Landforms of the World. We blended Murphy"s definition for landforms with the work E.M. Bridges, who in his 1990 book, World Geomorphology, provided a globally consistent description of geomorphological divisions, provinces, and sections to give names to the landform regions of the world. AttributeDescriptionBridges Full NameFull name from E.M. Bridges" 1990 "World Geomorphology" Division and if present province and section - intended for labeling print maps of small extents. Bridges DivisionGeomorphological Division as described in E.M. Bridges" 1990 "World Geomorphology" - All Landforms have a division assigned, i.e., no nulls. Bridges ProvinceGeomorphological Province as described in E.M. Bridges" 1990 "World Geomorphology" - Not all divisions are subdivided into provinces. Bridges SectionGeomorphological Section as described in E.M. Bridges" 1990 "World Geomorphology" - Not all provinces are subdivided into sections.StructureLandform Structure as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Alpine Systems: Area of mountains formed by orogenic (collisions of tectonic plates) processes in the past 350 to 500 million years. - Caledonian/Hercynian Shield Remnants: Area of mountains formed by orogenic (collisions of tectonic plates) processes 350 to 500 million years ago. - Gondwana or Laurasian Shields: Area underlaid by mostly crystalline rock formations fromed one billion or more years ago and unbroken by tectonic processes. - Rifted Shield Areas: fractures or spreading along or adjacent to tectonic plate edges. - Isolated Volcanic Areas: volcanic activity occurring outside of Alpine Systems and Rifted Shields. - Sedimentary: Areas of deposition occurring within the past 2.5 million years Moist or DryLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Moist: where annual aridity index is 1.0 or higher, which implies precipitation is absorbed or lost via runoff. - Dry: where annual aridity index is less than 1.0, which implies more precipitation evaporates before it can be absorbed or lost via runoff. TopographicLandform Topographic type variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Karagulle et. al. 2017 - based on rich morphometric characteristics. Coded Value Domain. Values include: - Plains: Areas with less than 90-meters of relief and slopes under 20%. - Hills: Areas with 90- to 300-meters of local relief. - Mountains: Areas with over 300-meters of relief - High Tablelands: Areas with over 300-meters of relief and 50% of highest elevation areas are of gentle slope. - Depressions or Basins: Areas of land surrounded land of higher elevation. Glaciation TypeLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Values include: - Wisconsin/Wurm Glacial Extent: Areas of most recent glaciation which formed 115,000 years ago and ended 11,000 years ago. - Pre-Wisconsin/Wurm Glacial Extent: Areas subjected only to glaciation prior to 140,000 years ago. ContinentAssigned by Author during data compilation. Bridges Short NameThe name of the smallest of Division, Province, or Section containing this landform feature. Murphy Landform CodeCombination of Richard E. Murphy"s 1968 "Landforms of the World" variables expressed as a 3- or 4- letter notation. Used to label medium scale maps. Area_GeoGeodesic area in km2. Primary PlateName of tectonic plate that either completely underlays this landform feature or underlays the largest portion of the landform"s area.Secondary PlateWhen a landform is underlaid by two or more tectonic plates, this is the plate that underlays the second largest area.3rd PlateWhen a landform is underlaid by three or more tectonic plates, this is the plate that underlays the third largest area.4th PlateWhen a landform is underlaid by four or more tectonic plates, this is the plate that underlays the fourth largest area.5th PlateWhen a landform is underlaid by five tectonic plates, this is the plate that underlays the fifth largest area.NotesContains standard text to convey additional tectonic process characteristics. Tectonic ProcessAssigns values of orogenic, rift zone, or above subducting plate. These data are also available as an ArcGIS Pro Map Package: Named_Landforms_of_the_World_v2.0.mpkx.These data supersede the earlier v1.0: World Named Landforms. Change Log:DateDescription of ChangeJuly 20, 2022Corrected spelling of Guiana from incorrect representation, "Guyana", used by Bridges.July 27, 2022Corrected Structure coded value domain value, changing "Caledonian/Hercynian Shield" to "Caledonian , Hercynian, or Appalachian Remnants". Cite as: Frye, C., Sayre R., Pippi, M., Karagulle, Murphy, A., D. Soller, D.R., Gilbert, M., and Richards, J., 2022. Named Landforms of the World. DOI: 10.13140/RG.2.2.33178.93129. Accessed on:

  3. M

    Geodatabase to Shapefile Warning Tool

    • gisdata.mn.gov
    esri_toolbox
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Minnesota (2025). Geodatabase to Shapefile Warning Tool [Dataset]. https://gisdata.mn.gov/dataset/gdb-to-shp-warning-tool
    Explore at:
    esri_toolboxAvailable download formats
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    University of Minnesota
    Description

    The Geodatabase to Shapefile Warning Tool examines feature classes in input file geodatabases for characteristics and data that would be lost or altered if it were transformed into a shapefile. Checks include:
    1) large files (feature classes with more than 255 fields or over 2GB), 2) field names longer than 10 characters
    string fields longer than 254 characters, 3) date fields with time values 4) NULL values, 5) BLOB, guid, global id, and raster field types, 6) attribute domains or subtypes, and 7) annotation or topology

    The results of this inspection are written to a text file ("warning_report_[geodatabase_name]") in the directory where the geodatabase is located. A section at the top provides a list of feature classes and information about the geodatabase as a whole. The report has a section for each valid feature class that returned a warning, with a summary of possible warnings and then more details about issues found.

    The tool can process multiple file geodatabases at once. A separate text file report will be created for each geodatabase. The toolbox was created using ArcGIS Pro 3.7.11.

    For more information about this and other related tools, explore the Geospatial Data Curation toolkit

  4. GIS data for InVEST

    • kaggle.com
    Updated Aug 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rakshit Mittal (2020). GIS data for InVEST [Dataset]. https://www.kaggle.com/rakshitmittal/jharkhand-gis-data-for-invest/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 21, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rakshit Mittal
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    I made this dataset while performing Integrated Valuation of Ecosystem Services and Tradeoffss (InVEST) models of wetlands in India.

    Content

    This dataset is a collection of Geographic Information System (GIS) data sourced from various public domains. It includes shapefiles, image raster files, etc which can are primarily developed with the aim of using with GIS software such as ArcGIS Pro, QGIS, etc. Most of the datasets are global in nature with some, like the OpenStreetMap data pertaining to India only. The data is as described below:

    DataSourceResolutionLinkCitation
    Land Use Land CoverEuropean Space Agency Copernicus Land Cover Product300 metreshttps://cds.climate.copernicus.eu/cdsapp#!/home
    PrecipitationGlobal Precipitation Climatology Centre, Monitoring 61 degreehttps://opendata.dwd.de/climate_environment/GPCC/html/gpcc_monitoring_v6_doi_download.html
    Hydrological Soil GroupsWorld HySOGs250m, ORNL DAAC, NASA250 metreshttps://daac.ornl.gov/SOILS/guides/Global_Hydrologic_Soil_Group.html
    Ecosystem Rooting DepthsISLCSP2, ORNL DAAC, NASA1 degreehttps://daac.ornl.gov/ISLSCP_II/guides/ecosystem_roots_1deg.html
    Digital Elevation ModelGMTED2010, USGS EROS Archive7.5 arc-sechttps://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation?qt-science_center_objects=0#qt-science_center_objects
    Rainfall Erosivity, Soil ErodibilityGloSEM, EU ESDAC-JRC25 kmhttps://esdac.jrc.ec.europa.eu/content/global-soil-erosion
    WatershedsHydroBASINS, HydroSHEDS, World Wildlife Fundshapefilehttps://hydrosheds.org/page/hydrobasins
    Reference EvapotranspirationGlobal-PET, CGIAR, Consortium for Spatial Information30 arc-sechttps://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
    Points of Interest, Roadways, Airports, Bus Stations, etcOpenStreetMap datashapefilehttps://download.geofabrik.de/asia/india.html
    Plant Available Water ContentWISE30sec, ISRIC World Soil Information30 arc-sechttps://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/dc7b283a-8f19-45e1-aaed-e9bd515119bc
    Cropping Data, Fertilization RatesEarthStat 20005 arc-minhttp://www.earthstat.org/ ...
  5. Data from: Segment Anything Model (SAM)

    • morocco.africageoportal.com
    • angola.africageoportal.com
    • +2more
    Updated Apr 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Segment Anything Model (SAM) [Dataset]. https://morocco.africageoportal.com/content/9b67b441f29f4ce6810979f5f0667ebe
    Explore at:
    Dataset updated
    Apr 17, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Segmentation models perform a pixel-wise classification by classifying the pixels into different classes. The classified pixels correspond to different objects or regions in the image. These models have a wide variety of use cases across multiple domains. When used with satellite and aerial imagery, these models can help to identify features such as building footprints, roads, water bodies, crop fields, etc.Generally, every segmentation model needs to be trained from scratch using a dataset labeled with the objects of interest. This can be an arduous and time-consuming task. Meta's Segment Anything Model (SAM) is aimed at creating a foundational model that can be used to segment (as the name suggests) anything using zero-shot learning and generalize across domains without additional training. SAM is trained on the Segment Anything 1-Billion mask dataset (SA-1B) which comprises a diverse set of 11 million images and over 1 billion masks. This makes the model highly robust in identifying object boundaries and differentiating between various objects across domains, even though it might have never seen them before. Use this model to extract masks of various objects in any image.Using the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS. Fine-tuning the modelThis model can be fine-tuned using SamLoRA architecture in ArcGIS. Follow the guide and refer to this sample notebook to fine-tune this model.Input8-bit, 3-band imagery.OutputFeature class containing masks of various objects in the image.Applicable geographiesThe model is expected to work globally.Model architectureThis model is based on the open-source Segment Anything Model (SAM) by Meta.Training dataThis model has been trained on the Segment Anything 1-Billion mask dataset (SA-1B) which comprises a diverse set of 11 million images and over 1 billion masks.Sample resultsHere are a few results from the model.

  6. a

    Soil Survey Manitoba

    • hub.arcgis.com
    • geoportal.gov.mb.ca
    • +4more
    Updated Mar 8, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manitoba Maps (2012). Soil Survey Manitoba [Dataset]. https://hub.arcgis.com/maps/manitoba::soil-survey-manitoba
    Explore at:
    Dataset updated
    Mar 8, 2012
    Dataset authored and provided by
    Manitoba Maps
    Area covered
    Description

    Soil is essential to human survival. We rely on it for the production of food, fibre, timber and energy crops. Together with climate, the soil determines which crops can be grown, where and how much they will yield. In addition to supporting our agricultural needs, we rely on the soil to regulate the flow of rainwater and to act as a filter for drinking water. With such a tremendously important role, it is imperative that we manage our soils for their long-term productivity, sustainability and health.

    The first step in sustainable soil management is ensuring that the soil will support the land use activity. For example, only the better agricultural soils in Manitoba will support grain and vegetable production, while more marginal agricultural soils will support forage and pasture-based production. For this reason, agricultural development should only occur in areas where the soil resource will support the agricultural activity. The only way to do this is to understand the soil resource that is available. Soil survey information is the key to understanding the soil resource.

    Soil survey is an inventory of the properties of the soil (such as texture, internal drainage, parent material, depth to groundwater, topography, degree of erosion, stoniness, pH and salinity) and their spatial distribution over a landscape. Soils are grouped into similar types and their boundaries are delineated on a map. Each soil type has a unique set of physical, chemical and mineralogical characteristics and has similar reactions to use and management. The information assembled in a soil survey can be used to predict or estimate the potentials and limitations of the soils’ behaviour under different uses. As such, soil surveys can be used to plan the development of new lands or to evaluate the conversion of land to new uses. Soil surveys also provide insight into the kind and intensity of land management that will be needed.

    The survey scale of soils data for Manitoba ranges from 1:5,000 to 1:126,720, as identified in the 'SCALE' column.1:5,000. The survey objective at this scale is to collect high precision field scale data and it is mostly used in research plots and other highly intensive areas. It is also applicable to agricultural production and planning such as precision farming, agriculture capability, engineering, recreation, potato/irrigation suitability and productivity indices. Profile descriptions and samples are collected for all soils. At least one soil inspection exists per delineation and the minimum size delineation is 0.25 acres. The soil taxonomy is generally Phases of Soil Series. The mapping scale is 1:5,000 or 12.7 in/ mile.

    This file also contains soils data that has been collected in Manitoba at a survey intensity level of the second order. This includes data collected at a scale of 1:20,000. The survey objective at this scale is to collect field scale data and it is mostly used in agricultural production and planning such as precision farming, agriculture capability, engineering, recreation, potato/irrigation suitability and productivity indices. Soil pits are generally about 200 metres apart and are dug along transects which are about 500 metres apart. This translates to about 32 inspections sites per section (640 acres). The soils in each delineation are identified by field observations and remotely sensed data. Boundaries are verified at closely spaced intervals. Profile descriptions are collected for all major named soils and 10 inspection sites/section and 2 to 3 horizons per site require lab analyses. At least one soil inspection exists in over 90% of delineations and the minimum size delineation is generally about 4 acres at 1:20,000. The soil taxonomy is generally Phases of Soil Series. The mapping scale is 1:20,000 or 3.2 inch/ mile.

    This file also contains data that has been collected at the third order. This includes scales of 1:40,000 and 1:50,000. The survey objective at this scale is to collect field scale or regional data. If the topography is relatively uniform, appropriate interpretations include agriculture capability, engineering, recreation, potato/irrigation suitability and productivity indices. Soil pits are generally dug adjacent to section perimeters. This translates to about 16 inspection sites per section (640 acres). Soil boundaries are plotted by observation and remote sensed data. Profile descriptions exist for all major named soils and 2 inspection sites/section and 2 to 3 horizons per site require lab analyses. At least one soil inspection exists in 60-80% of delineations and the minimum size delineation is generally in the 10 to 20 acre range. The soil taxonomy is generally Series or Phases of Soil Series. The mapping scale is 1:40,000 or 2 inch/ mile; 1:50,000 or 1.5 inch/mile.

    This file also contains soils data that has been collected at a survey intensity level of the fourth order. This includes scales of 1:63,360, 1:100,000, 1:125,000, and 1:126,720. The survey objective is to collect provincial data and to provide general soil information about land management and land use. The number of soil pits dug averaged to about 6 inspections per section (640 acres). Soil boundaries are plotted by interpretation of remotely sensed data and few inspections exist. Profile descriptions are collected for all major named soils. At least one soil inspection exists in 30-60% of delineations and the minimum size delineation is 40 acres (1:63,360), 100 acres (1:100,000), 156 acres (126,700) and 623 acres (250,000). The soil taxonomy is generally phases of Subgroup or Association.

    As of 2022, soil survey field work and reports are still currently being collected in certain areas where detailed information does not exist. This file will be updated as more information becomes available. Typically, this is conducted on an rural municipality basis.

    In some areas of Manitoba, more detailed and historical information exists than what is contained in this file. However, at this time, some of this information is only available in a hard copy format. This file will be updated as more of this information is transferred into a GIS format.

    This file has an organizational framework similar to the original SoilAID digital files and a portion of this geographic extent was originally available on the Manitoba Land Initiative (MLI) website.

    Domains and coded values have also been integrated into the geodatabase files. This allows the user to view attribute information in either an abbreviated or a more descriptive manner. Choosing to display the description of the coded values allows the user to view the expanded information associated with the attribute value (reducing the need to constantly refer to the descriptions within the metadata). To change these settings in ArcCatalog, go to Customize --> ArcCatalog Options --> Tables tab --> check or uncheck 'Display coded value domain and subtype descriptions'. To change these settings in ArcMap, go to Customize --> ArcMapOptions --> Tables tab --> check or uncheck 'Display coded value domain and subtype descriptions'. This setting can also be changed by opening the attribute table, then Table Options (top left) --> Appearance --> check or uncheck 'Display coded value domain and subtype descriptions'. The file also contains field aliases, which can also be turned on or off under Table Options.

    The file - "Manitoba Municipal Boundaries" - from Manitoba Community Planning Services was used as one of the base administrative references for the soil polygon layer.

    Also used as references were the hydrological features mapped in the 1:20,000 and 1:50,000 NTS topographical layers (National Topographic System of Canada). Typically this would relate to larger hydrological features such as those designated as perennial lakes and perennial rivers.

    This same capability is available in ArcGIS Pro.

    For more info:

    https://www.gov.mb.ca/agriculture/soil/soil-survey/importance-of-soil-survey-mb.html#

  7. c

    Named Landforms of the World v2

    • cacgeoportal.com
    • hub.arcgis.com
    Updated Dec 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Atlas – Landscape Content (2021). Named Landforms of the World v2 [Dataset]. https://www.cacgeoportal.com/maps/f975b762b9ca447cb4b7dd1438133d09
    Explore at:
    Dataset updated
    Dec 7, 2021
    Dataset authored and provided by
    Living Atlas – Landscape Content
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Named Landforms of the World version 2 (NLWv2) contains four sub-layers representing geomorphological landforms, provinces, divisions, and their respective cartographic boundaries. The latter supports map making, while the first three represent basic units, such as landforms, which comprise provinces, and provinces comprise divisions. NLW is a substantial update to World Named Landforms in both compilation method and the attributes that describe each landform. For more details, please refer to our paper, Named Landforms of the World: A Geomorphological and Physiographic Compilation, in Annals of the American Association of Geographers. July 2, 2025: We have made Named Landforms of the World v3 (NLWv3) available. Please explore this group containing all of the layers and data. NLWv2 will remain available. Landforms are commonly defined as natural features on the surface of the Earth. The National Geographic Society specifies terrain as the basis for landforms and lists four major types: mountains, hills, plateaus, and plains. Here, however, we define landforms in a richer way that includes properties relating to underlying geologic structure, erosional and depositional character, and tectonic setting and processes. These characteristics were asserted by Dr. Richard E. Murphy in 1968 in his map, titled Landforms of the World. We blended Murphy"s definition for landforms with the work E.M. Bridges, who in his 1990 book, World Geomorphology, provided a globally consistent description of geomorphological divisions, provinces, and sections to give names to the landform regions of the world. AttributeDescriptionBridges Full NameFull name from E.M. Bridges" 1990 "World Geomorphology" Division and if present province and section - intended for labeling print maps of small extents. Bridges DivisionGeomorphological Division as described in E.M. Bridges" 1990 "World Geomorphology" - All Landforms have a division assigned, i.e., no nulls. Bridges ProvinceGeomorphological Province as described in E.M. Bridges" 1990 "World Geomorphology" - Not all divisions are subdivided into provinces. Bridges SectionGeomorphological Section as described in E.M. Bridges" 1990 "World Geomorphology" - Not all provinces are subdivided into sections.StructureLandform Structure as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Alpine Systems: Area of mountains formed by orogenic (collisions of tectonic plates) processes in the past 350 to 500 million years. - Caledonian/Hercynian Shield Remnants: Area of mountains formed by orogenic (collisions of tectonic plates) processes 350 to 500 million years ago. - Gondwana or Laurasian Shields: Area underlaid by mostly crystalline rock formations fromed one billion or more years ago and unbroken by tectonic processes. - Rifted Shield Areas: fractures or spreading along or adjacent to tectonic plate edges. - Isolated Volcanic Areas: volcanic activity occurring outside of Alpine Systems and Rifted Shields. - Sedimentary: Areas of deposition occurring within the past 2.5 million years Moist or DryLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Moist: where annual aridity index is 1.0 or higher, which implies precipitation is absorbed or lost via runoff. - Dry: where annual aridity index is less than 1.0, which implies more precipitation evaporates before it can be absorbed or lost via runoff. TopographicLandform Topographic type variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Karagulle et. al. 2017 - based on rich morphometric characteristics. Coded Value Domain. Values include: - Plains: Areas with less than 90-meters of relief and slopes under 20%. - Hills: Areas with 90- to 300-meters of local relief. - Mountains: Areas with over 300-meters of relief - High Tablelands: Areas with over 300-meters of relief and 50% of highest elevation areas are of gentle slope. - Depressions or Basins: Areas of land surrounded land of higher elevation. Glaciation TypeLandform Erosional/Depositional variable as described in Richard E. Murphy"s 1968 "Landforms of the World" map. Values include: - Wisconsin/Wurm Glacial Extent: Areas of most recent glaciation which formed 115,000 years ago and ended 11,000 years ago. - Pre-Wisconsin/Wurm Glacial Extent: Areas subjected only to glaciation prior to 140,000 years ago. ContinentAssigned by Author during data compilation. Bridges Short NameThe name of the smallest of Division, Province, or Section containing this landform feature. Murphy Landform CodeCombination of Richard E. Murphy"s 1968 "Landforms of the World" variables expressed as a 3- or 4- letter notation. Used to label medium scale maps. Area_GeoGeodesic area in km2. Primary PlateName of tectonic plate that either completely underlays this landform feature or underlays the largest portion of the landform"s area.Secondary PlateWhen a landform is underlaid by two or more tectonic plates, this is the plate that underlays the second largest area.3rd PlateWhen a landform is underlaid by three or more tectonic plates, this is the plate that underlays the third largest area.4th PlateWhen a landform is underlaid by four or more tectonic plates, this is the plate that underlays the fourth largest area.5th PlateWhen a landform is underlaid by five tectonic plates, this is the plate that underlays the fifth largest area.NotesContains standard text to convey additional tectonic process characteristics. Tectonic ProcessAssigns values of orogenic, rift zone, or above subducting plate. These data are also available as an ArcGIS Pro Map Package: Named_Landforms_of_the_World_v2.0.mpkx.These data supersede the earlier v1.0: World Named Landforms. Change Log:DateDescription of ChangeJuly 20, 2022Corrected spelling of Guiana from incorrect representation, "Guyana", used by Bridges.July 27, 2022Corrected Structure coded value domain value, changing "Caledonian/Hercynian Shield" to "Caledonian , Hercynian, or Appalachian Remnants". Cite as: Frye, C., Sayre R., Pippi, M., Karagulle, Murphy, A., D. Soller, D.R., Gilbert, M., and Richards, J., 2022. Named Landforms of the World. DOI: 10.13140/RG.2.2.33178.93129. Accessed on:

  8. a

    Bridges Divisions

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Dec 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Atlas – Landscape Content (2021). Bridges Divisions [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/LandscapeTeam::bridges-divisions-1
    Explore at:
    Dataset updated
    Dec 7, 2021
    Dataset authored and provided by
    Living Atlas – Landscape Content
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Named Landforms of the World (NLW) contains four sub-layers representing geomorphological landforms, provinces, divisions, and their respective cartographic boundaries. The latter is to support map making, while the first three represent basic units such landforms comprise provinces, and provinces comprise divisions. NLW is a substantial update to World Named Landforms in both compilation method and the attributes that describe each landform.For more details, please refer to our paper, Named Landforms of the World: A Geomorphological and Physiographic Compilation, in Annals of the American Assocation of Geographers.Landforms are commonly defined as natural features on the surface of the Earth. The National Geographic Society specifies terrain as the basis for landforms and lists four major types: mountains, hills, plateaus, and plains. Here, however, we define landforms in a richer way that includes properties relating to underlying geologic structure, erosional and depositional character, and tectonic setting and processes. These characteristics were asserted by Dr. Richard E. Murphy in 1968 in his map, titled Landforms of the World. We blended Murphy's definition for landforms with the work E.M. Bridges, who in his 1990 book, World Geomorphology, provided a globally consistent description of geomorphological divisions, provinces, and sections to give names to the landform regions of the world. AttributeDescription Bridges Full NameFull name from E.M. Bridges' 1990 "World Geomorphology" Division and if present province and section - intended for labeling print maps of small extents. Bridges DivisionGeomorphological Division as described in E.M. Bridges' 1990 "World Geomorphology" - All Landforms have a division assigned, i.e., no nulls. Bridges ProvinceGeomorphological Province as described in E.M. Bridges' 1990 "World Geomorphology" - Not all divisions are subdivided into provinces. Bridges SectionGeomorphological Section as described in E.M. Bridges' 1990 "World Geomorphology" - Not all provinces are subdivided into sections. StructureLandform Structure as described in Richard E. Murphy's 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Alpine Systems: Area of mountains formed by orogenic (collisions of tectonic plates) processes in the past 350 to 500 million years. - Caledonian/Hercynian Shield Remnants: Area of mountains formed by orogenic (collisions of tectonic plates) processes 350 to 500 million years ago. - Gondwana or Laurasian Shields: Area underlaid by mostly crystalline rock formations fromed one billion or more years ago and unbroken by tectonic processes. - Rifted Shield Areas: fractures or spreading along or adjacent to tectonic plate edges. - Isolated Volcanic Areas: volcanic activity occurring outside of Alpine Systems and Rifted Shields. - Sedimentary: Areas of deposition occurring within the past 2.5 million years Moist or DryLandform Erosional/Depositional variable as described in Richard E. Murphy's 1968 "Landforms of the World" map. Coded Value Domain. Values include: - Moist: where annual aridity index is 1.0 or higher, which implies precipitation is absorbed or lost via runoff. - Dry: where annual aridity index is less than 1.0, which implies more precipitation evaporates before it can be absorbed or lost via runoff. TopographicLandform Topographic type variable as described in Richard E. Murphy's 1968 "Landforms of the World" map. Karagulle et. al. 2017 - based on rich morphometric characteristics. Coded Value Domain. Values include: - Plains: Areas with less than 90-meters of relief and slopes under 20%. - Hills: Areas with 90- to 300-meters of local relief. - Mountains: Areas with over 300-meters of relief - High Tablelands: Areas with over 300-meters of relief and 50% of highest elevation areas are of gentle slope. - Depressions or Basins: Areas of land surrounded land of higher elevation. Glaciation TypeLandform Erosional/Depositional variable as described in Richard E. Murphy's 1968 "Landforms of the World" map. Values include: - Wisconsin/Wurm Glacial Extent: Areas of most recent glaciation which formed 115,000 years ago and ended 11,000 years ago. - Pre-Wisconsin/Wurm Glacial Extent: Areas subjected only to glaciation prior to 140,000 years ago. ContinentAssigned by Author during data compilation. Bridges Short NameThe name of the smallest of Division, Province, or Section containing this landform feature. Murphy Landform CodeCombination of Richard E. Murphy's 1968 "Landforms of the World" variables expressed as a 3- or 4- letter notation. Used to label medium scale maps. Area_GeoGeodesic area in km2. Primary PlateName of tectonic plate that either completely underlays this landform feature or underlays the largest portion of the landform's area. Secondary PlateWhen a landform is underlaid by two or more tectonic plates, this is the plate that underlays the second largest area. 3rd PlateWhen a landform is underlaid by three or more tectonic plates, this is the plate that underlays the third largest area. 4th PlateWhen a landform is underlaid by four or more tectonic plates, this is the plate that underlays the fourth largest area. 5th PlateWhen a landform is underlaid by five tectonic plates, this is the plate that underlays the fifth largest area. NotesContains standard text to convey additional tectonic process characteristics. Tectonic ProcessAssigns values of orogenic, rift zone, or above subducting plate.

    These data are also available as an ArcGIS Pro Map Package: Named_Landforms_of_the_World_v2.0.mpkx.These data supersede the earlier v1.0: World Named Landforms.Change Log:

    DateDescription of Change July 20, 2022Corrected spelling of Guiana from incorrect representation, "Guyana", used by Bridges. July 27, 2022Corrected Structure coded value domain value, changing "Caledonian/Hercynian Shield" to "Caledonian , Hercynian, or Appalachian Remnants".

    Cite as:Frye, C., Sayre R., Pippi, M., Karagulle, Murphy, A., D. Soller, D.R., Gilbert, M., and Richards, J., 2022. Named Landforms of the World. DOI: 10.13140/RG.2.2.33178.93129. Accessed on:

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Richardson, Texas (2019). ROW Permit GIS Data Template [Dataset]. https://opendata-richardson.opendata.arcgis.com/datasets/3cd180fa4ff7409aae7fb07b9b72f1fd

ROW Permit GIS Data Template

Explore at:
Dataset updated
Mar 25, 2019
Dataset authored and provided by
City of Richardson, Texas
Area covered
Description

A Right-of-Way Construction Permit is required for any work performed within the City of Richardson's Right-of-Way or Easements. Work must be performed in accordance with local Ordinances and Right of Way Standard Construction Details. This zipfile contains a layer file and a file geodatabase with two feature classes. The 'Districts' polygon feature class is just for reference so that the applicant can determine which district the new asset is in (the layer file will have the saved symbology for ease of use). The 'WirelessFacility' point feature class is where the applicant will edit and input the new asset. There are domains on this feature class which will act as 'drop-downs' when editing.Be sure to unzip the file after downloading so that it can be viewed in ArcMap or ArcGIS Pro.For more information about the geodatabase download the ROW GIS Data Template Instructions.

Search
Clear search
Close search
Google apps
Main menu