Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data sets in this repository allow users to link people among the U.S. decennial censuses, using the "histid" identifier. The census data sets users will need are indexed by Ancestry.com and are hosted by IPUMS at https://usa.ipums.org/usa-action/samples. Users will need to download the full-count census for each year and be sure to select the "histid" variable that is available under the Person/Historical Technical drop-down menu.As of 7/12/21, links are available between the 1900-1910, 1910-1920, and 1900-1920 censuses.A detailed account of how these links are created and a description of the data and its characteristics are available in the following article:Price, J., Buckles, K., Van Leeuwen, J., & Riley, I. (2021). Combining family history and machine learning to link historical records: The Census Tree data set. Explorations in Economic History, 80, 101391.https://www.sciencedirect.com/science/article/pii/S0014498321000024
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Lake town: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lake town median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Georgetown town: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Georgetown town median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Price town: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Price town median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Lake town by race. It includes the population of Lake town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Lake town across relevant racial categories.
Key observations
The percent distribution of Lake town population by race (across all racial categories recognized by the U.S. Census Bureau): 96.70% are white, 0.57% are American Indian and Alaska Native, 0.19% are some other race and 2.55% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lake town Population by Race & Ethnicity. You can refer the same here
https://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.5683/SP3/LCXVCRhttps://borealisdata.ca/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.5683/SP3/LCXVCR
Note: Data on gender diverse households (formerly "2SLGBTQ+" households) has been added as of March 28th, 2025. For more information, please visit HART.ubc.ca. Housing Assessment Resource Tools (HART) This dataset contains 18 tables which draw upon data from the 2021 Canadian Census of Population. The tables are a custom order and contain data pertaining to core housing need and characteristics of households and dwellings. This custom order was placed in collaboration with Housing, Infrastructure and Communities Canada to fill data gaps in their Housing Needs Assessment Template. 17 of the tables each cover a different geography in Canada: one for Canada as a whole, one for all Canadian census divisions (CD), and 15 for all census subdivisions (CSD) across Canada. The 18th table contains the median income for all geographies. Statistics Canada used these median incomes as the "area median household income (AMHI)," from which they derived some of the data fields within the Shelter Costs/Household Income dimension. The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and data fields: Geography: - Country of Canada, all CDs & Country as a whole - All 10 Provinces (Newfoundland, Prince Edward Island (PEI), Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columbia), all CSDs & each Province as a whole - All 3 Territories (Nunavut, Northwest Territories, Yukon), all CSDs & each Territory as a whole *- Data on gender diverse households is only available for geographies (provinces, territories, CDs, CSDs) with a population count greater than 50,000. Data Quality and Suppression: - The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. - Area suppression is used to replace all income characteristic data with an 'x' for geographic areas with populations and/or number of households below a specific threshold. If a tabulation contains quantitative income data (e.g., total income, wages), qualitative data based on income concepts (e.g., low income before tax status) or derived data based on quantitative income variables (e.g., indexes) for individuals, families or households, then the following rule applies: income characteristic data are replaced with an 'x' for areas where the population is less than 250 or where the number of private households is less than 40. Source: Statistics Canada - When showing count data, Statistics Canada employs random rounding in order to reduce the possibility of identifying individuals within the tabulations. Random rounding transforms all raw counts to random rounded counts. Reducing the possibility of identifying individuals within the tabulations becomes pertinent for very small (sub)populations. All counts greater than 10 are rounded to a base of 5, meaning they will end in either 0 or 5. The random rounding algorithm controls the results and rounds the unit value of the count according to a predetermined frequency. Counts ending in 0 or 5 are not changed. Counts less than 10 are rounded to a base of 10, meaning they will be rounded to either 10 or Zero. Universe: Private Households in Non-farm Non-band Off-reserve Occupied Private Dwellings with Income Greater than zero. Households examined for Core Housing Need: Private, non-farm, non-reserve, owner- or renter-households with incomes greater than zero and shelter-cost-to-income ratios less than 100% are assessed for 'Core Housing Need.' Non-family Households with at least one household maintainer aged 15 to 29 attending school are considered not to be in Core Housing Need, regardless of their housing circumstances. Data Fields: Tenure Including Presence of Mortgage and Subsidized Housing; Household size (7) 1. Total - Private households by tenure including presence of mortgage payments and subsidized housing 2. Owner 3. With mortgage 4. Without mortgage 5. Renter 6. Subsidized housing 7. Not subsidized housing Housing indicators in Core Housing Universe (12) 1. Total - Private Households by core housing need status 2. Households examined for core housing need 3. Households in core...
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset includes one dataset which was custom ordered from Statistics Canada.The table includes information on housing suitability and shelter-cost-to-income ratio by number of bedrooms, housing tenure, status of primary household maintainer, household type, and income quartile ranges for census subdivisions in British Columbia. The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and variables: Geography: Non-reserve CSDs in British Columbia - 299 geographies The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. All the geographies requested for this tabulation have been cleared for the release of income data and have a GNR under 50%. Housing Tenure Including Presence of Mortgage (5) 1. Total – Private non-band non-farm off-reserve households with an income greater than zero by housing tenure 2. Households who own 3. With a mortgage1 4. Without a mortgage 5. Households who rent Note: 1) Presence of mortgage - Refers to whether the owner households reported mortgage or loan payments for their dwelling. 2015 Before-tax Household Income Quartile Ranges (5) 1. Total – Private households by quartile ranges1, 2, 3 2. Count of households under or at quartile 1 3. Count of households between quartile 1 and quartile 2 (median) (including at quartile 2) 4. Count of households between quartile 2 (median) and quartile 3 (including at quartile 3) 5. Count of households over quartile 3 Notes: 1) A private household will be assigned to a quartile range depending on its CSD-level location and depending on its tenure (owned and rented). Quartile ranges for owned households in a specific CSD are delimited by the 2015 before-tax income quartiles of owned households with an income greater than zero and residing in non-farm off-reserve dwellings in that CSD. Quartile ranges for rented households in a specific CSD are delimited by the 2015 before-tax income quartiles of rented households with an income greater than zero and residing in non-farm off-reserve dwellings in that CSD. 2) For the income quartiles dollar values (the delimiters) please refer to Table 1. 3) Quartiles 1 to 3 are suppressed if the number of actual records used in the calculation (not rounded or weighted) is less than 16. For cases in which the renters’ quartiles or the owners’ quartiles (figures from Table 1) of a CSD are suppressed the CSD is assigned to a quartile range depending on the provincial renters’ or owners’ quartile figures. Number of Bedrooms (Unit Size) (6) 1. Total – Private households by number of bedrooms1 2. 0 bedrooms (Bachelor/Studio) 3. 1 bedroom 4. 2 bedrooms 5. 3 bedrooms 6. 4 bedrooms Note: 1) Dwellings with 5 bedrooms or more included in the total count only. Housing Suitability (6) 1. Total - Housing suitability 2. Suitable 3. Not suitable 4. One bedroom shortfall 5. Two bedroom shortfall 6. Three or more bedroom shortfall Note: 1) 'Housing suitability' refers to whether a private household is living in suitable accommodations according to the National Occupancy Standard (NOS); that is, whether the dwelling has enough bedrooms for the size and composition of the household. A household is deemed to be living in suitable accommodations if its dwelling has enough bedrooms, as calculated using the NOS. 'Housing suitability' assesses the required number of bedrooms for a household based on the age, sex, and relationships among household members. An alternative variable, 'persons per room,' considers all rooms in a private dwelling and the number of household members. Housing suitability and the National Occupancy Standard (NOS) on which it is based were developed by Canada Mortgage and Housing Corporation (CMHC) through consultations with provincial housing agencies. Shelter-cost-to-income-ratio (4) 1. Total – Private non-band non-farm off-reserve households with an income greater than zero 2. Spending less than 30% of households total income on shelter costs 3. Spending 30% or more of households total income on shelter costs 4. Spending 50% or more of households total income on shelter costs Note: 'Shelter-cost-to-income...
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A person's assessment of the general state of their health from very good to very bad. This assessment is not based on a person's health over any specified period of time.CoverageThis dataset is focused on the data for Birmingham at Ward level. Also available at LSOA, MSOA and Constituency levels.About the 2021 CensusThe Census takes place every 10 years and gives us a picture of all the people and households in England and Wales.Protecting personal dataThe ONS sometimes need to make changes to data if it is possible to identify individuals. This is known as statistical disclosure control. In Census 2021, they:
Swapped records (targeted record swapping), for example, if a household was likely to be identified in datasets because it has unusual characteristics, they swapped the record with a similar one from a nearby small area. Very unusual households could be swapped with one in a nearby local authority. Added small changes to some counts (cell key perturbation), for example, we might change a count of four to a three or a five. This might make small differences between tables depending on how the data are broken down when they applied perturbation.For more geographies, aggregations or topics see the link in the Reference below. Or, to create a custom dataset with multiple variables use the ONS Create a custom dataset tool.Population valueThe value column represents All usual residents.The percentage shown is the value as a percentage of All usual residents within the given geography.
VITAL SIGNS INDICATOR Rent Payments (EC8)
FULL MEASURE NAME Median rent payment
LAST UPDATED August 2019
DESCRIPTION Rent payments refer to the cost of leasing an apartment or home and serves as a measure of housing costs for individuals who do not own a home. The data reflect the median monthly rent paid by Bay Area households across apartments and homes of various sizes and various levels of quality. This differs from advertised rents for available apartments, which usually are higher. Note that rent can be presented using nominal or real (inflation-adjusted) dollar values; data are presented inflation-adjusted to reflect changes in household purchasing power over time.
DATA SOURCE U.S. Census Bureau: Decennial Census 1970-2000 https://nhgis.org Note: Count 1 and Count 2; Form STF1; Form SF3a
U.S. Census Bureau: American Community Survey 2005-2017 http://api.census.gov Note: Form B25058; 1-YR
Bureau of Labor Statistics: Consumer Price Index 1970-2017 http://www.bls.gov/data/ Note: All Urban Consumers Data Table (by metro)
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Rent data reflects median rent payments rather than list rents (refer to measure definition above). Larger geographies (metro and county) rely upon ACS 1-year data, while smaller geographies rely upon ACS 5-year rolling average data. 1970 Census data for median rent payments has been imputed by ABAG staff as the source data only provided the mean, rather than the median, monthly rent. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.
Inflation-adjusted data are presented to illustrate how rent payments have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The ethnic group that the person completing the census feels they belong to. This could be based on their culture, family background, identity or physical appearance.CoverageThis dataset is focused on the data for Birmingham at Ward level. Also available at LSOA, MSOA and Constituency levels.About the 2021 CensusThe Census takes place every 10 years and gives us a picture of all the people and households in England and Wales.Protecting personal dataThe ONS sometimes need to make changes to data if it is possible to identify individuals. This is known as statistical disclosure control. In Census 2021, they:
Swapped records (targeted record swapping), for example, if a household was likely to be identified in datasets because it has unusual characteristics, they swapped the record with a similar one from a nearby small area. Very unusual households could be swapped with one in a nearby local authority. Added small changes to some counts (cell key perturbation), for example, we might change a count of four to a three or a five. This might make small differences between tables depending on how the data are broken down when they applied perturbation.For more geographies, aggregations or topics see the link in the Reference below. Or, to create a custom dataset with multiple variables use the ONS Create a custom dataset tool.Population valueThe value column represents All usual residents.The percentage shown is the value as a percentage of All usual residents within the given geography.
https://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/CTSYFEhttps://borealisdata.ca/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.5683/SP3/CTSYFE
Housing Assessment Resource Tools (HART) This dataset contains 2 tables and 5 files which draw upon data from the 2021 Census of Canada. The tables are a custom order and contain data pertaining to older adults and housing need. The 2 tables have 6 dimensions in common and 1 dimension that is unique to each table. Table 1's unique dimension is the "Ethnicity / Indigeneity status" dimension which contains data fields related to visible minority and Indigenous identity within the population in private households. Table 2's unique dimension is "Structural type of dwelling and Period of Construction" which contains data fields relating to the structural type and period of construction of the dwelling. Each of the two tables is then split into multiple files based on geography. Table 1 has two files: Table 1.1 includes Canada, Provinces and Territories (14 geographies), CDs of NWT (6), CDs of Yukon (1) and CDs of Nunavut (3); and Table 1.2 includes Canada and the CMAs of Canada (44). Table 2 has three files: Table 2.1 includes Canada, Provinces and Territories (14), CDs of NWT (6), CDs of Yukon (1) and CDs of Nunavut (3); Table 2.2 includes Canada and the CMAs of Canada excluding Ontario and Quebec (20 geographies); and Table 2.3 includes Canada and the CMAs of Canada that are in Ontario and Quebec (25 geographies). The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and data fields: Geography: - Country of Canada as a whole - All 10 Provinces (Newfoundland, Prince Edward Island (PEI), Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columbia) as a whole - All 3 Territories (Nunavut, Northwest Territories, Yukon), as a whole as well as all census divisions (CDs) within the 3 territories - All 43 census metropolitan areas (CMAs) in Canada Data Quality and Suppression: - The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. - Area suppression is used to replace all income characteristic data with an 'x' for geographic areas with populations and/or number of households below a specific threshold. If a tabulation contains quantitative income data (e.g., total income, wages), qualitative data based on income concepts (e.g., low income before tax status) or derived data based on quantitative income variables (e.g., indexes) for individuals, families or households, then the following rule applies: income characteristic data are replaced with an 'x' for areas where the population is less than 250 or where the number of private households is less than 40. Source: Statistics Canada - When showing count data, Statistics Canada employs random rounding in order to reduce the possibility of identifying individuals within the tabulations. Random rounding transforms all raw counts to random rounded counts. Reducing the possibility of identifying individuals within the tabulations becomes pertinent for very small (sub)populations. All counts are rounded to a base of 5, meaning they will end in either 0 or 5. The random rounding algorithm controls the results and rounds the unit value of the count according to a predetermined frequency. Counts ending in 0 or 5 are not changed. Universe: Full Universe: Population aged 55 years and over in owner and tenant households with household total income greater than zero in non-reserve non-farm private dwellings. Definition of Households examined for Core Housing Need: Private, non-farm, non-reserve, owner- or renter-households with incomes greater than zero and shelter-cost-to-income ratios less than 100% are assessed for 'Core Housing Need.' Non-family Households with at least one household maintainer aged 15 to 29 attending school are considered not to be in Core Housing Need, regardless of their housing circumstances. Data Fields: Table 1: Age / Gender (12) 1. Total – Population 55 years and over 2. Men+ 3. Women+ 4. 55 to 64 years 5. Men+ 6. Women+ 7. 65+ years 8. Men+ 9. Women+ 10. 85+ 11. Men+ 12. Women+ Housing indicators (13) 1. Total – Private Households by core housing need status 2. Households below one standard only...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Price town: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Price town median household income by age. You can refer the same here
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A person's age on Census Day, 21 March 2021 in England and Wales.CoverageThis dataset is focused on the data for Birmingham at Ward level. Also available at LSOA, MSOA and Constituency levels.About the 2021 CensusThe Census takes place every 10 years and gives us a picture of all the people and households in England and Wales.Protecting personal dataThe ONS sometimes need to make changes to data if it is possible to identify individuals. This is known as statistical disclosure control. In Census 2021, they:
Swapped records (targeted record swapping), for example, if a household was likely to be identified in datasets because it has unusual characteristics, they swapped the record with a similar one from a nearby small area. Very unusual households could be swapped with one in a nearby local authority. Added small changes to some counts (cell key perturbation), for example, we might change a count of four to a three or a five. This might make small differences between tables depending on how the data are broken down when they applied perturbation.For more geographies, aggregations or topics see the link in the Reference below. Or, to create a custom dataset with multiple variables use the ONS Create a custom dataset tool.Population valueThe value column represents All usual residents.The percentage shown is the value as a percentage of All usual residents within the given geography.
https://borealisdata.ca/api/datasets/:persistentId/versions/11.2/customlicense?persistentId=doi:10.5683/SP3/8PUZQAhttps://borealisdata.ca/api/datasets/:persistentId/versions/11.2/customlicense?persistentId=doi:10.5683/SP3/8PUZQA
Note: The data release is complete as of August 14th, 2023. 1. (Added April 4th) Canada and Census Divisions = Early April 2023 2. (Added May 1st) Ontario, British Columbia, and Alberta Census Subdivisions (CSDs) = Late April 2023 3a. (Added June 8th) Manitoba and Saskatchewan CSDs 3b. (Added June 12th) Quebec CSDs = June 12th 2023 4. (Added June 30th) Newfoundland and Labrador, Prince Edward Island, New Brunswick, and Nova Scotia CSDs = Early July 2023 5. (Added August 14th) Yukon, Northwest Territories, and Nunavut CSDs = Early August 2023. For more information, please visit HART.ubc.ca. Housing Assessment Resource Tools (HART) This dataset contains 18 tables which draw upon data from the 2021 Census of Canada. The tables are a custom order and contains data pertaining to core housing need and characteristics of households. 17 of the tables each cover a different geography in Canada: one for Canada as a whole, one for all Canadian census divisions (CD), and 15 for all census subdivisions (CSD) across Canada. The last table contains the median income for all geographies. Statistics Canada used these median incomes as the "area median household income (AMHI)," from which they derived some of the data fields within the Shelter Costs/Household Income dimension. Included alongside the data tables is a guide to HART's housing need assessment methodology. This guide is intended to support independent use of HART's custom data both to allow for transparent verification of our analysis, as well as supporting efforts to utilize the data for analysis beyond what HART did. There are many data fields in the data order that we did not use that may be of value for others. The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide Custom order from Statistics Canada includes the following dimensions and data fields: Geography: - Country of Canada, all CDs & Country as a whole - All 10 Provinces (Newfoundland, Prince Edward Island (PEI), Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columbia), all CSDs & each Province as a whole - All 3 Territories (Nunavut, Northwest Territories, Yukon), all CSDs & each Territory as a whole Data Quality and Suppression: - The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released. - Area suppression is used to replace all income characteristic data with an 'x' for geographic areas with populations and/or number of households below a specific threshold. If a tabulation contains quantitative income data (e.g., total income, wages), qualitative data based on income concepts (e.g., low income before tax status) or derived data based on quantitative income variables (e.g., indexes) for individuals, families or households, then the following rule applies: income characteristic data are replaced with an 'x' for areas where the population is less than 250 or where the number of private households is less than 40. Source: Statistics Canada - When showing count data, Statistics Canada employs random rounding in order to reduce the possibility of identifying individuals within the tabulations. Random rounding transforms all raw counts to random rounded counts. Reducing the possibility of identifying individuals within the tabulations becomes pertinent for very small (sub)populations. All counts greater than 10 are rounded to a base of 5, meaning they will end in either 0 or 5. The random rounding algorithm controls the results and rounds the unit value of the count according to a predetermined frequency. Counts ending in 0 or 5 are not changed. Counts of 10 or less are rounded to a base of 10, meaning they will be rounded to either 10 or zero. Universe: Full Universe: Private Households in Non-farm Non-band Off-reserve Occupied Private Dwellings with Income Greater than zero. Households examined for Core Housing Need: Private, non-farm, non-reserve, owner- or renter-households with incomes greater than zero and shelter-cost-to-income ratios less than 100% are assessed for 'Core Housing Need.' Non-family Households with at least one household maintainer aged 15 to 29 attending school are considered not to be in Core Housing...
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The religion people connect or identify with (their religious affiliation), whether or not they practise or have belief in it. This question was voluntary and includes people who identified with one of eight tick-box response options, including "No religion", alongside those who chose not to answer this question.CoverageThis dataset is focused on the data for Birmingham at Ward level. Also available at LSOA, MSOA and Constituency levels.About the 2021 CensusThe Census takes place every 10 years and gives us a picture of all the people and households in England and Wales.Protecting personal dataThe ONS sometimes need to make changes to data if it is possible to identify individuals. This is known as statistical disclosure control. In Census 2021, they:
Swapped records (targeted record swapping), for example, if a household was likely to be identified in datasets because it has unusual characteristics, they swapped the record with a similar one from a nearby small area. Very unusual households could be swapped with one in a nearby local authority. Added small changes to some counts (cell key perturbation), for example, we might change a count of four to a three or a five. This might make small differences between tables depending on how the data are broken down when they applied perturbation.For more geographies, aggregations or topics see the link in the Reference below. Or, to create a custom dataset with multiple variables use the ONS Create a custom dataset tool.Population valueThe value column represents All usual residents.The percentage shown is the value as a percentage of All usual residents within the given geography.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Georgetown town by race. It includes the population of Georgetown town across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Georgetown town across relevant racial categories.
Key observations
The percent distribution of Georgetown town population by race (across all racial categories recognized by the U.S. Census Bureau): 98.48% are white and 1.52% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Georgetown town Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Price County by race. It includes the distribution of the Non-Hispanic population of Price County across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Price County across relevant racial categories.
Key observations
Of the Non-Hispanic population in Price County, the largest racial group is White alone with a population of 13,140 (95.42% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Price County Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.
For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e20
Estimate from 2016-20 ACS
_m20
Margin of Error from 2016-20 ACS
_e10
2006-10 ACS, re-estimated to 2020 geography
_m10
Margin of Error from 2006-10 ACS, re-estimated to 2020 geography
_e10_20
Change, 2010-20 (holding constant at 2020 geography)
Geographies
AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)
ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)
Census Tracts (statewide)
CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)
City (statewide)
City of Atlanta Council Districts (City of Atlanta)
City of Atlanta Neighborhood Planning Unit (City of Atlanta)
City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)
City of Atlanta Neighborhood Statistical Areas (City of Atlanta)
County (statewide)
Georgia House (statewide)
Georgia Senate (statewide)
MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)
Regional Commissions (statewide)
State of Georgia (statewide)
Superdistrict (ARC region)
US Congress (statewide)
UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)
WFF = Westside Future Fund (subarea of City of Atlanta)
ZIP Code Tabulation Areas (statewide)
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)
Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.
For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e20
Estimate from 2016-20 ACS
_m20
Margin of Error from 2016-20 ACS
_e10
2006-10 ACS, re-estimated to 2020 geography
_m10
Margin of Error from 2006-10 ACS, re-estimated to 2020 geography
_e10_20
Change, 2010-20 (holding constant at 2020 geography)
Geographies
AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)
ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)
Census Tracts (statewide)
CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)
City (statewide)
City of Atlanta Council Districts (City of Atlanta)
City of Atlanta Neighborhood Planning Unit (City of Atlanta)
City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)
City of Atlanta Neighborhood Statistical Areas (City of Atlanta)
County (statewide)
Georgia House (statewide)
Georgia Senate (statewide)
MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)
Regional Commissions (statewide)
State of Georgia (statewide)
Superdistrict (ARC region)
US Congress (statewide)
UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)
WFF = Westside Future Fund (subarea of City of Atlanta)
ZIP Code Tabulation Areas (statewide)
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)
Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Price by race. It includes the population of Price across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Price across relevant racial categories.
Key observations
The percent distribution of Price population by race (across all racial categories recognized by the U.S. Census Bureau): 84.64% are white, 1.62% are Black or African American, 1.31% are American Indian and Alaska Native, 0.51% are Asian, 0.60% are Native Hawaiian and other Pacific Islander, 2.45% are some other race and 8.87% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Price Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data sets in this repository allow users to link people among the U.S. decennial censuses, using the "histid" identifier. The census data sets users will need are indexed by Ancestry.com and are hosted by IPUMS at https://usa.ipums.org/usa-action/samples. Users will need to download the full-count census for each year and be sure to select the "histid" variable that is available under the Person/Historical Technical drop-down menu.As of 7/12/21, links are available between the 1900-1910, 1910-1920, and 1900-1920 censuses.A detailed account of how these links are created and a description of the data and its characteristics are available in the following article:Price, J., Buckles, K., Van Leeuwen, J., & Riley, I. (2021). Combining family history and machine learning to link historical records: The Census Tree data set. Explorations in Economic History, 80, 101391.https://www.sciencedirect.com/science/article/pii/S0014498321000024