15 datasets found
  1. y

    S&P 500 P/E Ratio

    • ycharts.com
    html
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 P/E Ratio [Dataset]. https://ycharts.com/indicators/sp_500_pe_ratio
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Dec 31, 1988 - Jun 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 P/E Ratio
    Description

    View quarterly updates and historical trends for S&P 500 P/E Ratio. from United States. Source: Standard and Poor's. Track economic data with YCharts anal…

  2. T

    Dow | DOW - PE Price to Earnings

    • tradingeconomics.com
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Dow | DOW - PE Price to Earnings [Dataset]. https://tradingeconomics.com/dow:us:pe
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 3, 2025
    Area covered
    United States
    Description

    Dow reported $123.1 in PE Price to Earnings for its fiscal quarter ending in June of 2025. Data for Dow | DOW - PE Price to Earnings including historical, tables and charts were last updated by Trading Economics this last December in 2025.

  3. Average price-to-earnings ratio of stocks on the TSE 2022-2024, by market...

    • statista.com
    Updated Jan 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average price-to-earnings ratio of stocks on the TSE 2022-2024, by market division [Dataset]. https://www.statista.com/statistics/1537827/japan-tokyo-stock-exchange-average-price-to-earnings-ratio-of-stocks/
    Explore at:
    Dataset updated
    Jan 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan
    Description

    In 2024, the average price-to-earnings (P/E) ratio of stocks on the Prime Market of the Tokyo Stock Exchange (TSE) in Japan was **. The average P/E ratio of stocks on the Standard Market was ****.

  4. Dow Jones Industrial Average Index Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Oct 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones Industrial Average Index Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/dow-jones-industrial-average-index_25.html
    Explore at:
    Dataset updated
    Oct 25, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Industrial Average Index Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. y

    S&P 500 P/E Ratio Forward Estimate

    • ycharts.com
    html
    Updated Nov 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 P/E Ratio Forward Estimate [Dataset]. https://ycharts.com/indicators/sp_500_pe_ratio_forward_estimate
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Mar 31, 2021 - Dec 31, 2026
    Area covered
    United States
    Variables measured
    S&P 500 P/E Ratio Forward Estimate
    Description

    View quarterly updates and historical trends for S&P 500 P/E Ratio Forward Estimate. from United States. Source: Standard and Poor's. Track economic data …

  6. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  7. y

    S&P 500 Shiller CAPE Ratio

    • ycharts.com
    html
    Updated Nov 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Shiller (2025). S&P 500 Shiller CAPE Ratio [Dataset]. https://ycharts.com/indicators/cyclically_adjusted_pe_ratio
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    YCharts
    Authors
    Robert Shiller
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 31, 1881 - Nov 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 Shiller CAPE Ratio
    Description

    View monthly updates and historical trends for S&P 500 Shiller CAPE Ratio. from United States. Source: Robert Shiller. Track economic data with YCharts an…

  8. I

    India P/E ratio

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India P/E ratio [Dataset]. https://www.ceicdata.com/en/indicator/india/pe-ratio
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 14, 2025 - Dec 1, 2025
    Area covered
    India
    Description

    Key information about India P/E ratio

    • India SENSEX recorded a daily P/E ratio of 23.360 on 02 Dec 2025, compared with 23.380 from the previous day.
    • India SENSEX P/E ratio is updated daily, with historical data available from Dec 1988 to Dec 2025.
    • The P/E ratio reached an all-time high of 36.210 in Feb 2021 and a record low of 15.670 in Mar 2020.
    • BSE Limited provides daily P/E Ratio.

    In the latest reports, Sensitive 30 (Sensex) closed at 85,706.670 points in Nov 2025.

  9. Data from: Can stock prices be predicted? (Dow Jones Industrial Average...

    • kappasignal.com
    Updated Oct 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can stock prices be predicted? (Dow Jones Industrial Average Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/can-stock-prices-be-predicted-dow-jones.html
    Explore at:
    Dataset updated
    Oct 22, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can stock prices be predicted? (Dow Jones Industrial Average Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. H

    Hong Kong SAR, China P/E ratio

    • ceicdata.com
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Hong Kong SAR, China P/E ratio [Dataset]. https://www.ceicdata.com/en/indicator/hong-kong/pe-ratio
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 10, 2025 - Mar 25, 2025
    Area covered
    Hong Kong
    Description

    Key information about Hong Kong SAR (China) P/E ratio

    • Hong Kong SAR (China) Hang Seng recorded a daily P/E ratio of 11.950 on 26 Mar 2025, compared with 12.200 from the previous day.
    • Hong Kong SAR (China) Hang Seng P/E ratio is updated daily, with historical data available from Apr 2000 to Mar 2025.
    • The P/E ratio reached an all-time high of 18.400 in Nov 2010 and a record low of 7.450 in Feb 2016.
    • Hang Seng Indexes Company Limited provides daily P/E Ratio.

    In the latest reports, Hang Seng closed at 22,941.320 points in Feb 2025.

  11. Should You Buy Dow Jones Industrial Average Index Right Now? (Stock...

    • kappasignal.com
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Should You Buy Dow Jones Industrial Average Index Right Now? (Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/should-you-buy-dow-jones-industrial.html
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Should You Buy Dow Jones Industrial Average Index Right Now? (Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. y

    S&P 500 Earnings Per Share

    • ycharts.com
    html
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 Earnings Per Share [Dataset]. https://ycharts.com/indicators/sp_500_eps
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Mar 31, 1988 - Jun 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 Earnings Per Share
    Description

    View quarterly updates and historical trends for S&P 500 Earnings Per Share. from United States. Source: Standard and Poor's. Track economic data with YCh…

  13. Top Tech Companies Stock Price

    • kaggle.com
    zip
    Updated Nov 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomas Mantero (2020). Top Tech Companies Stock Price [Dataset]. https://www.kaggle.com/tomasmantero/top-tech-companies-stock-price
    Explore at:
    zip(7295960 bytes)Available download formats
    Dataset updated
    Nov 24, 2020
    Authors
    Tomas Mantero
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    In this dataset you can find the Top 100 companies in the technology sector. You can also find 5 of the most important and used indices in the financial market as well as a list of all the companies in the S&P 500 index and in the technology sector.

    The Global Industry Classification Standard also known as GICS is the primary financial industry standard for defining sector classifications. The Global Industry Classification Standard was developed by index providers MSCI and Standard and Poor’s. Its hierarchy begins with 11 sectors which can be further delineated to 24 industry groups, 69 industries, and 158 sub-industries.

    You can read the definition of each sector here.

    The 11 broad GICS sectors commonly used for sector breakdown reporting include the following: Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, Information Technology, Telecommunication Services, Utilities and Real Estate.

    In this case we will focuse in the Technology Sector. You can see all the sectors and industry groups here.

    To determine which companies, correspond to the technology sector, we use Yahoo Finance, where we rank the companies according to their “Market Cap”. After having the list of the Top 100 best valued companies in the sector, we proceeded to download the historical data of each of the companies using the NASDAQ website.

    Regarding to the indices, we searched various sources to find out which were the most used and determined that the 5 most frequently used indices are: Dow Jones Industrial Average (DJI), S&P 500 (SPX), NASDAQ Composite (IXIC), Wilshire 5000 Total Market Inde (W5000) and to specifically view the technology sector SPDR Select Sector Fund - Technology (XLK). Historical data for these indices was also obtained from the NASDQ website.

    Content

    In total there are 107 files in csv format. They are composed as follows:

    • 100 files contain the historical data of tech companies.
    • 5 files contain the historical data of the most used indices.
    • 1 file contain the list of all the companies in the S&P 500 index.
    • 1 file contain the list of all the companies in the technology sector.

    Column Description

    Every company and index file has the same structure with the same columns:

    Date: It is the date on which the prices were recorded. High: Is the highest price at which a stock traded during the course of the trading day. Low: Is the lowest price at which a stock traded during the course of the trading day. Open: Is the price at which a stock started trading when the opening bell rang. Close: Is the last price at which a stock trades during a regular trading session. Volume: Is the number of shares that changed hands during a given day. Adj Close: The adjusted closing price factors in corporate actions, such as stock splits, dividends, and rights offerings.

    The two other files have different columns names:

    List of S&P 500 companies

    Symbol: Ticker symbol of the company. Name: Name of the company. Sector: The sector to which the company belongs.

    Technology Sector Companies List

    Symbol: Ticker symbol of the company. Name: Name of the company. Price: Current price at which a stock can be purchased or sold. (11/24/20) Change: Net change is the difference between closing prices from one day to the next. % Change: Is the difference between closing prices from one day to the next in percentage. Volume: Is the number of shares that changed hands during a given day. Avg Vol: Is the daily average of the cumulative trading volume during the last three months. Market Cap (Billions): Is the total value of a company’s shares outstanding at a given moment in time. It is calculated by multiplying the number of shares outstanding by the price of a single share. PE Ratio: Is the ratio of a company's share (stock) price to the company's earnings per share. The ratio is used for valuing companies and to find out whether they are overvalued or undervalued.

    Acknowledgements

    SEC EDGAR | Company Filings NASDAQ | Historical Quotes Yahoo Finance | Technology Sector Wikipedia | List of S&P 500 companies S&P Dow Jones Indices | S&P 500 [S&P Dow Jones Indices | DJI](https://www.spglobal.com/spdji/en/i...

  14. Dow Jones New Zealand Index: A Bullish Journey or Bearish Plunge? (Forecast)...

    • kappasignal.com
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones New Zealand Index: A Bullish Journey or Bearish Plunge? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/dow-jones-new-zealand-index-bullish_25.html
    Explore at:
    Dataset updated
    May 25, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    New Zealand
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones New Zealand Index: A Bullish Journey or Bearish Plunge?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. Short/Long Term Stocks: Dow Jones New Zealand Index Stock Forecast...

    • kappasignal.com
    Updated Oct 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Short/Long Term Stocks: Dow Jones New Zealand Index Stock Forecast (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/shortlong-term-stocks-dow-jones-new.html
    Explore at:
    Dataset updated
    Oct 21, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    New Zealand
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Short/Long Term Stocks: Dow Jones New Zealand Index Stock Forecast

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Standard and Poor's (2025). S&P 500 P/E Ratio [Dataset]. https://ycharts.com/indicators/sp_500_pe_ratio

S&P 500 P/E Ratio

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
htmlAvailable download formats
Dataset updated
Oct 9, 2025
Dataset provided by
YCharts
Authors
Standard and Poor's
License

https://www.ycharts.com/termshttps://www.ycharts.com/terms

Time period covered
Dec 31, 1988 - Jun 30, 2025
Area covered
United States
Variables measured
S&P 500 P/E Ratio
Description

View quarterly updates and historical trends for S&P 500 P/E Ratio. from United States. Source: Standard and Poor's. Track economic data with YCharts anal…

Search
Clear search
Close search
Google apps
Main menu