Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Index: Dow Jones: Consumer Goods data was reported at 591.930 31Dec1991=100 in Nov 2018. This records an increase from the previous number of 586.290 31Dec1991=100 for Oct 2018. United States Index: Dow Jones: Consumer Goods data is updated monthly, averaging 360.000 31Dec1991=100 from Aug 2005 (Median) to Nov 2018, with 160 observations. The data reached an all-time high of 647.170 31Dec1991=100 in Jan 2018 and a record low of 195.870 31Dec1991=100 in Feb 2009. United States Index: Dow Jones: Consumer Goods data remains active status in CEIC and is reported by Dow Jones. The data is categorized under Global Database’s United States – Table US.Z015: Dow Jones: Indexes.
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
The Dow Jones U.S. Consumer Services Capped Index is forecast to experience moderate growth over the coming period, driven by strong consumer spending in the post-pandemic recovery. However, risks remain, including the potential for further disruptions to the global supply chain, rising inflation, and the impact of geopolitical events on consumer sentiment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Index: Dow Jones: Consumer Services data was reported at 981.440 31Dec1991=100 in Jun 2018. This records an increase from the previous number of 948.990 31Dec1991=100 for May 2018. United States Index: Dow Jones: Consumer Services data is updated monthly, averaging 376.610 31Dec1991=100 from Aug 2005 (Median) to Jun 2018, with 155 observations. The data reached an all-time high of 989.510 31Dec1991=100 in Jan 2018 and a record low of 181.250 31Dec1991=100 in Feb 2009. United States Index: Dow Jones: Consumer Services data remains active status in CEIC and is reported by Dow Jones. The data is categorized under Global Database’s USA – Table US.Z015: Dow Jones: Indexes.
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
The Dow Jones U.S. Consumer Services index is expected to experience moderate growth in the near future. Key factors driving this growth include rising consumer spending, increased disposable income, and favorable economic conditions. However, risks associated with the index include rising inflation, geopolitical uncertainty, and supply chain disruptions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States New York Stock Exchange: Index: Dow Jones US Consumer Services Index data was reported at 1,838.250 NA in Apr 2025. This records an increase from the previous number of 1,814.880 NA for Mar 2025. United States New York Stock Exchange: Index: Dow Jones US Consumer Services Index data is updated monthly, averaging 1,072.890 NA from Aug 2013 (Median) to Apr 2025, with 141 observations. The data reached an all-time high of 2,030.200 NA in Jan 2025 and a record low of 527.340 NA in Aug 2013. United States New York Stock Exchange: Index: Dow Jones US Consumer Services Index data remains active status in CEIC and is reported by Exchange Data International Limited. The data is categorized under Global Database’s United States – Table US.EDI.SE: New York Stock Exchange: Dow Jones: Monthly.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States New York Stock Exchange: Index: Dow Jones US Consumer Goods Index data was reported at 903.550 NA in Apr 2025. This records an increase from the previous number of 898.780 NA for Mar 2025. United States New York Stock Exchange: Index: Dow Jones US Consumer Goods Index data is updated monthly, averaging 619.890 NA from Aug 2013 (Median) to Apr 2025, with 141 observations. The data reached an all-time high of 1,047.020 NA in Dec 2021 and a record low of 437.010 NA in Aug 2013. United States New York Stock Exchange: Index: Dow Jones US Consumer Goods Index data remains active status in CEIC and is reported by Exchange Data International Limited. The data is categorized under Global Database’s United States – Table US.EDI.SE: New York Stock Exchange: Dow Jones: Monthly.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
April 9, 2025, saw the largest one-day gain in the history of the Dow Jones Industrial Average (DJIA), follwing Trump's announcement of 90-day delay in the introduction of tariffs imposed on imports from all countries. The second-largest one-day gain occurred on March 24, 2020, with the index increasing ******** points. This occurred approximately two weeks after the largest one-day point loss occurred on March 9, 2020, which was triggered by the growing panic about the coronavirus outbreak worldwide. Index fluctuations The DJIA is an index of ** large companies traded on the New York Stock Exchange. It is one of the numbers that financial analysts watch closely, using it as a bellwether for the United States economy. Seeing when these large gains occur, as well as the largest one-day point losses, gives insight to why these fluctuations may occur. The gains in 2009 are likely adjustments after major losses during the Financial Crisis, but those in 2018 are probably signs of high market volatility. Other leading financial indicators While the DJIA is closely watched, it only gives insight on the performance of thirty leading U.S. companies. An index like the S&P 500, tracking *** companies, can give a more comprehensive overview of the United States economy. Even so, this only reflects investment. Other parts of the economy, such as consumer spending or unemployment rate are not well reflected in stock market indices.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
指数:道琼斯:消费品在11-01-2018达591.9301991年12月31日=100,相较于10-01-2018的586.2901991年12月31日=100有所增长。指数:道琼斯:消费品数据按月更新,08-01-2005至11-01-2018期间平均值为360.0001991年12月31日=100,共160份观测结果。该数据的历史最高值出现于01-01-2018,达647.1701991年12月31日=100,而历史最低值则出现于02-01-2009,为195.8701991年12月31日=100。CEIC提供的指数:道琼斯:消费品数据处于定期更新的状态,数据来源于Dow Jones,数据归类于全球数据库的美国 – 表 US.Z015:道琼斯:指数。
The year 2025 has seen significant stock market volatility, with many of the world's largest companies experiencing substantial year-to-date losses. Tesla, Inc. has been hit particularly hard, with a 32.6 percent decline as of April 10, 2025. Even tech giants like Apple and Microsoft have not been immune, seeing losses of 20.59 percent and 7.63 percent respectively. Tech giants maintain market dominance despite losses Despite the recent stock price declines, technology companies continue to lead in market capitalization. Microsoft, Apple, NVIDIA, Amazon, and Alphabet (Google) remain among the few companies with market caps exceeding one trillion U.S. dollars. This dominance reflects their long-term growth and influence in the global economy, even as they face short-term challenges in the stock market. Market volatility reflects broader economic concerns The current stock market losses are reminiscent of past periods of economic uncertainty. In 2020, the COVID-19 pandemic caused severe market turbulence, with the Dow Jones Industrial Average dropping around 8,000 points in just four weeks. While the market has since recovered and reached new highs, the current downturn suggests ongoing economic concerns. Investors are likely reacting to various factors, including inflation, geopolitical tensions, and potential shifts in consumer behavior.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
纽约证券交易所:指数:道琼斯美国消费者服务指数在04-01-2025达1,838.250NA,相较于03-01-2025的1,814.880NA有所增长。纽约证券交易所:指数:道琼斯美国消费者服务指数数据按月更新,08-01-2013至04-01-2025期间平均值为1,072.890NA,共141份观测结果。该数据的历史最高值出现于01-01-2025,达2,030.200NA,而历史最低值则出现于08-01-2013,为527.340NA。CEIC提供的纽约证券交易所:指数:道琼斯美国消费者服务指数数据处于定期更新的状态,数据来源于Exchange Data International Limited,数据归类于全球数据库的美国 – Table US.EDI.SE: New York Stock Exchange: Dow Jones: Monthly。
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Enterprise value to earnings before interest, taxes, depreciation and amortization (EV/EBITDA) is a key measurement ratio used as a metric of valuing whether a company is under or overvalued as compared to a historical industry average. The S&P 500 (Standard & Poor’s) is an index of the 500 largest U.S. publicly traded companies by market capitalization. In 2023, the consumer staples sector displayed the highest EV/EBITDA multiple with *****.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Index: Dow Jones: Consumer Goods data was reported at 591.930 31Dec1991=100 in Nov 2018. This records an increase from the previous number of 586.290 31Dec1991=100 for Oct 2018. United States Index: Dow Jones: Consumer Goods data is updated monthly, averaging 360.000 31Dec1991=100 from Aug 2005 (Median) to Nov 2018, with 160 observations. The data reached an all-time high of 647.170 31Dec1991=100 in Jan 2018 and a record low of 195.870 31Dec1991=100 in Feb 2009. United States Index: Dow Jones: Consumer Goods data remains active status in CEIC and is reported by Dow Jones. The data is categorized under Global Database’s United States – Table US.Z015: Dow Jones: Indexes.