https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-08-31 to 2025-08-28 about stock market, average, industry, and USA.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset captures historical financial market data and macroeconomic indicators spanning over three decades, from 1990 onwards. It is designed for financial analysis, time series forecasting, and exploring relationships between market volatility, stock indices, and macroeconomic factors. This dataset is particularly relevant for researchers, data scientists, and enthusiasts interested in studying: - Volatility forecasting (VIX) - Stock market trends (S&P 500, DJIA, HSI) - Macroeconomic influences on markets (joblessness, interest rates, etc.) - The effect of geopolitical and economic uncertainty (EPU, GPRD)
The data has been aggregated from a mix of historical financial records and publicly available macroeconomic datasets: - VIX (Volatility Index): Chicago Board Options Exchange (CBOE). - Stock Indices (S&P 500, DJIA, HSI): Yahoo Finance and historical financial databases. - Volume Data: Extracted from official exchange reports. - Macroeconomic Indicators: Bureau of Economic Analysis (BEA), Federal Reserve, and other public records. - Uncertainty Metrics (EPU, GPRD): Economic Policy Uncertainty Index and Global Policy Uncertainty Database.
dt
: Date of observation in YYYY-MM-DD format.vix
: VIX (Volatility Index), a measure of expected market volatility.sp500
: S&P 500 index value, a benchmark of the U.S. stock market.sp500_volume
: Daily trading volume for the S&P 500.djia
: Dow Jones Industrial Average (DJIA), another key U.S. market index.djia_volume
: Daily trading volume for the DJIA.hsi
: Hang Seng Index, representing the Hong Kong stock market.ads
: Aruoba-Diebold-Scotti (ADS) Business Conditions Index, reflecting U.S. economic activity.us3m
: U.S. Treasury 3-month bond yield, a short-term interest rate proxy.joblessness
: U.S. unemployment rate, reported as quartiles (1 represents lowest quartile and so on).epu
: Economic Policy Uncertainty Index, quantifying policy-related economic uncertainty.GPRD
: Geopolitical Risk Index (Daily), measuring geopolitical risk levels.prev_day
: Previous day’s S&P 500 closing value, added for lag-based time series analysis.Feel free to use this dataset for academic, research, or personal projects.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, fell to 6483 points on August 29, 2025, losing 0.28% from the previous session. Over the past month, the index has climbed 1.90% and is up 14.78% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.
The statistic shows the average daily trading volume of stock transactions taking place both at the Shanghai Stock Exchange and the Shenzhen Stock Exchange from 2012 to 2017. In 2017, the average daily trading volume of China's stock market amounted to around ****** billion yuan.
At yearend 2024, the trading volume of China's stock market had amounted to approximately ** trillion shares. The statistic shows the trading volume of stock transactions taking place at both the Shanghai Stock Exchange and the Shenzhen Stock Exchange. The bourses are the vanguard of China's trading industry.
This statistic shows the largest global stock exchanges globally as of March 2025, ranked by the value of electronic order book share trading. In that time, the NYSE Stock Market was the largest stock exchange worldwide, with the value of EOB shares traded amounting to *** trillion U.S. dollars. Stock exchanges — additional information Stock exchanges are an important part of the free market economic system and are the most important component of the stock market. A stock exchange provides the setting in which stockbrokers, sellers, buyers, and traders can be brought together to take part in the sale of shares, bonds, derivatives and other securities. The core function of a stock exchange is to enable the fair and orderly trading, as well as the provision of price information, of any securities being traded on that exchange. Originally the exchanges were physical places (in some world locations the goods are still traded over-the-counter) but with time, they took the shape of an electronic platform. In order that company shares may be bought, traded and sold on a stock exchange, the company is required to have undergone an initial public offering process (IPO) on that particular exchange. The initial public offering of Alibaba Group Holding, a Chinese company operating in the e-commerce sector, on the New York Stock Exchange in September 2014, was the largest listing in the United States since 1996. The IPO of Alibaba Group Holding raised approximately ***** billion U.S. dollars.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Throughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.
It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Non-professional investors often try to find an interesting stock among those in an index (such as the Standard and Poor's 500, Nasdaq, etc.). They need only one company, the best, and they don't want to fail (perform poorly). So, the metric to optimize is accuracy, described as:
Accuracy = True Positives / (True Positives + False Positives)
And the predictive model can be a binary classifier.
The data covers the price and volume of shares of 31 NASDAQ companies in the year 2022.
Every data set I found to predict a stock price (investing) aims to find the price for the next day, and only for that stock. But in practical terms, people like to find the best stocks to buy from an index and wait a few days hoping to get an increase in the price of this investment.
Rows are grouped by companies and their age (newest to oldest) on a common date. The first column is the company. The following are the age, market, date (separated by year, month, day, hour, minute), share volume, various traditional prices of that share (close, open, high...), some price and volume statistics and target. The target is mainly defined as 1 when the closing price increases by at least 5% in 5 days (open market days). The target is 0 in any other case.
Complex features and target were made by executing: https://www.kaggle.com/code/luisandresgarcia/202307
Many thanks to everyone who participates in scientific papers and Kaggle notebooks related to financial investment.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for United States Stock Market Index (US30) including live quotes, historical charts and news. United States Stock Market Index (US30) was last updated by Trading Economics this August 28 of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The US capital market exchange ecosystem, encompassing exchanges like the NYSE, NASDAQ, and Cboe, is a robust and dynamic sector experiencing significant growth. Driven by factors such as increasing retail investor participation fueled by technological advancements and democratization of access to financial markets (e.g., through commission-free trading apps), and a surge in IPOs and other capital-raising activities by both established and emerging companies, the market demonstrates substantial expansion potential. The diversification of financial instruments beyond traditional equities and debt into areas like derivatives and ETFs further contributes to market expansion. Institutional investors, including hedge funds and mutual funds, continue to play a pivotal role, driving trading volume and liquidity. While regulatory changes and macroeconomic uncertainties pose potential restraints, the overall outlook remains positive, with a projected CAGR exceeding 8% for the forecast period 2025-2033. Technological innovations, including AI-driven trading algorithms and blockchain technology for enhanced security and transparency, are reshaping the landscape, promoting efficiency and attracting further investment. The segment breakdown reveals a substantial contribution from both primary and secondary markets, with equity trading likely holding a larger market share compared to debt instruments in the US context. Regional analysis highlights the dominance of North America, particularly the United States, due to its mature financial markets and large pool of both retail and institutional investors. However, other regions, including Europe and Asia-Pacific, are demonstrating increasing participation and growth, fueled by economic expansion and the rising middle class in emerging economies. The competitive landscape is characterized by established players alongside emerging fintech companies offering innovative trading platforms and services. This competition fosters innovation and enhances market efficiency, benefiting both investors and businesses seeking capital. The ongoing evolution of the ecosystem necessitates ongoing adaptation and strategic planning for all participants, ensuring relevance and profitability in a rapidly changing environment. Notable trends are: Increasing Capitalization in Equity Market Driving the Capital Market.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv
contains some additional metadata for each ticker such as full name.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Companies analysed and their ticker symbols.
The Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains comprehensive stock market data for June 2025, capturing daily trading information across multiple companies and sectors. The dataset represents a substantial collection of market data with detailed financial metrics and trading statistics.
Column Name | Data Type | Description | Example Values |
---|---|---|---|
Date | Date | Trading date in DD-MM-YYYY format | 01-06-2025, 02-06-2025 |
Ticker | String | Stock ticker symbol (3-4 characters) | AAPL, GOOGL, TSLA |
Open Price | Float | Opening price of the stock | 34.92, 206.5, 125.1 |
Attribute | Details |
---|---|
Dataset Name | Stock Market Data - June 2025 |
File Format | CSV |
File Size | ~2.5 MB |
Number of Records | 11,600+ |
Number of Features | 13 |
Time Period | June 1-21, 2025 |
Column Name | Data Type | Description | Example Values |
---|---|---|---|
Date | Date | Trading date in DD-MM-YYYY format | 01-06-2025, 02-06-2025 |
Ticker | String | Stock ticker symbol (3-4 characters) | AAPL, GOOGL, TSLA, SLH |
Open Price | Float | Opening price of the stock | 34.92, 206.5, 125.1 |
Close Price | Float | Closing price of the stock | 34.53, 208.45, 124.03 |
High Price | Float | Highest price during the trading day | 35.22, 210.51, 127.4 |
Low Price | Float | Lowest price during the trading day | 34.38, 205.12, 121.77 |
Volume Traded | Integer | Number of shares traded | 2,966,611, 1,658,738 |
Market Cap | Float | Market capitalization in dollars | 57,381,363,838.88 |
PE Ratio | Float | Price-to-Earnings ratio | 29.63, 13.03, 29.19 |
Dividend Yield | Float | Dividend yield percentage | 2.85, 2.73, 2.64 |
EPS | Float | Earnings per Share | 1.17, 16.0, 4.25 |
52 Week High | Float | Highest price in the last 52 weeks | 39.39, 227.38, 138.35 |
52 Week Low | Float | Lowest price in the last 52 weeks | 28.44, 136.79, 100.69 |
Sector | String | Industry sector classification | Industrials, Energy, Healthcare |
✅ Authentic Price Ranges: Based on realistic 2025 market projections ✅ Sector-Appropriate Volatility: Different volatility patterns by industry ✅ Correlated Metrics: P/E ratios, dividend yields, and EPS align with market caps ✅ Realistic Trading Volumes: Volume scaled appropriately to market cap ✅ Temporal Consistency: Logical price progression over 53-day period ✅ Market Cap Accuracy: Daily fluctuations reflect actual price movements
This dataset provides a comprehensive foundation for quantitative finance research, offering both breadth across market sectors and depth in daily trading dynamics while maintaining statistical realism throughout the observation period...
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 14 series, with data starting from 1953 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Stock market statistics (14 items: Toronto Stock Exchange; value of shares traded; United States common stocks; Dow-Jones industrials; high; United States common stocks; Dow-Jones industrials; low; Toronto Stock Exchange; volume of shares traded ...).
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-08-31 to 2025-08-28 about stock market, average, industry, and USA.