CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains >800K CSV files behind the GitTables 1M corpus.
For more information about the GitTables corpus, visit:
- our website for GitTables, or
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains the metadata of the datasets published in 85 Dataverse installations and information about each installation's metadata blocks. It also includes the lists of pre-defined licenses or terms of use that dataset depositors can apply to the datasets they publish in the 58 installations that were running versions of the Dataverse software that include that feature. The data is useful for reporting on the quality of dataset and file-level metadata within and across Dataverse installations and improving understandings about how certain Dataverse features and metadata fields are used. Curators and other researchers can use this dataset to explore how well Dataverse software and the repositories using the software help depositors describe data. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation between August 22 and August 28, 2023 using a Python script kept in a GitHub repo at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_dataset_metadata_of_all_installations.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL in which I was able to create an account and another column named "apikey" listing my accounts' API tokens. The Python script expects the CSV file and the listed API tokens to get metadata and other information from installations that require API tokens. How the files are organized ├── csv_files_with_metadata_from_most_known_dataverse_installations │ ├── author(citation)_2023.08.22-2023.08.28.csv │ ├── contributor(citation)_2023.08.22-2023.08.28.csv │ ├── data_source(citation)_2023.08.22-2023.08.28.csv │ ├── ... │ └── topic_classification(citation)_2023.08.22-2023.08.28.csv ├── dataverse_json_metadata_from_each_known_dataverse_installation │ ├── Abacus_2023.08.27_12.59.59.zip │ ├── dataset_pids_Abacus_2023.08.27_12.59.59.csv │ ├── Dataverse_JSON_metadata_2023.08.27_12.59.59 │ ├── hdl_11272.1_AB2_0AQZNT_v1.0(latest_version).json │ ├── ... │ ├── metadatablocks_v5.6 │ ├── astrophysics_v5.6.json │ ├── biomedical_v5.6.json │ ├── citation_v5.6.json │ ├── ... │ ├── socialscience_v5.6.json │ ├── ACSS_Dataverse_2023.08.26_22.14.04.zip │ ├── ADA_Dataverse_2023.08.27_13.16.20.zip │ ├── Arca_Dados_2023.08.27_13.34.09.zip │ ├── ... │ └── World_Agroforestry_-_Research_Data_Repository_2023.08.27_19.24.15.zip └── dataverse_installations_summary_2023.08.28.csv └── dataset_pids_from_most_known_dataverse_installations_2023.08.csv └── license_options_for_each_dataverse_installation_2023.09.05.csv └── metadatablocks_from_most_known_dataverse_installations_2023.09.05.csv This dataset contains two directories and four CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 20 CSV files that list the values of many of the metadata fields in the citation metadata block and geospatial metadata block of datasets in the 85 Dataverse installations. For example, author(citation)_2023.08.22-2023.08.28.csv contains the "Author" metadata for the latest versions of all published, non-deaccessioned datasets in the 85 installations, where there's a row for author names, affiliations, identifier types and identifiers. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 85 zipped files, one for each of the 85 Dataverse installations whose dataset metadata I was able to download. Each zip file contains a CSV file and two sub-directories: The CSV file contains the persistent IDs and URLs of each published dataset in the Dataverse installation as well as a column to indicate if the Python script was able to download the Dataverse JSON metadata for each dataset. It also includes the alias/identifier and category of the Dataverse collection that the dataset is in. One sub-directory contains a JSON file for each of the installation's published, non-deaccessioned dataset versions. The JSON files contain the metadata in the "Dataverse JSON" metadata schema. The Dataverse JSON export of the latest version of each dataset includes "(latest_version)" in the file name. This should help those who are interested in the metadata of only the latest version of each dataset. The other sub-directory contains information about the metadata models (the "metadata blocks" in JSON files) that the installation was using when the dataset metadata was downloaded. I included them so that they can be used when extracting metadata from the dataset's Dataverse JSON exports. The dataverse_installations_summary_2023.08.28.csv file contains information about each installation, including its name, URL, Dataverse software version, and counts of dataset metadata...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.
Below are the datasets specified, along with the details of their references, authors, and download sources.
----------- STS-Gold Dataset ----------------
The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.
Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.
File name: sts_gold_tweet.csv
----------- Amazon Sales Dataset ----------------
This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.
Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)
Features:
License: CC BY-NC-SA 4.0
File name: amazon.csv
----------- Rotten Tomatoes Reviews Dataset ----------------
This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.
This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).
Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics
File name: data_rt.csv
----------- Preprocessed Dataset Sentiment Analysis ----------------
Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
Stemmed and lemmatized using nltk.
Sentiment labels are generated using TextBlob polarity scores.
The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).
DOI: 10.34740/kaggle/dsv/3877817
Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }
This dataset was used in the experimental phase of my research.
File name: EcoPreprocessed.csv
----------- Amazon Earphones Reviews ----------------
This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)
License: U.S. Government Works
Source: www.amazon.in
File name (original): AllProductReviews.csv (contains 14337 reviews)
File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)
----------- Amazon Musical Instruments Reviews ----------------
This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).
Source: http://jmcauley.ucsd.edu/data/amazon/
File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)
File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential School Locations Dataset [IRS_Locations.csv] contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Walmart products sample dataset having 1000+ records in CSV format. Download monthly dataset for walmart data and it having around 100K+ records.
Get 50% discount for all datasets. Link
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A diverse selection of 1000 empirical time series, along with results of an hctsa feature extraction, using v1.06 of hctsa and Matlab 2019b, computed on a server at The University of Sydney.The results of the computation are in the hctsa file, HCTSA_Empirical1000.mat for use in Matlab using v1.06 of hctsa.The same data is also provided in .csv format for the hctsa_datamatrix.csv (results of feature computation), with information about rows (time series) in hctsa_timeseries-info.csv, information about columns (features) in hctsa_features.csv (and corresponding hctsa code used to compute each feature in hctsa_masterfeatures.csv), and the data of individual time series (each line a time series, for time series described in hctsa_timeseries-info.csv) is in hctsa_timeseries-data.csv. These .csv files were produced by running >>OutputToCSV(HCTSA_Empirical1000.mat,true,true); in hctsa.The input file, INP_Empirical1000.mat, is for use with hctsa, and contains the time-series data and metadata for the 1000 time series. For example, massive feature extraction from these data on the user's machine, using hctsa, can proceed as>> TS_Init('INP_Empirical1000.mat');Some visualizations of the dataset are in CarpetPlot.png (first 1000 samples of all time series as a carpet (color) plot) and 150TS-250samples.png (conventional time-series plots of the first 250 samples of a sample of 150 time series from the dataset). More visualizations can be performed by the user using TS_PlotTimeSeries from the hctsa package.See links in references for more comprehensive documentation for performing methodological comparison using this dataset, and on how to download and use v1.06 of hctsa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The event logs in CSV format. The dataset contains both correlated and uncorrelated logs
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a set of network traffic traces in pcap/csv format captured from a single user. The traffic is classified in 5 different activities (Video, Bulk, Idle, Web, and Interactive) and the label is shown in the filename. There is also a file (mapping.csv) with the mapping of the host's IP address, the csv/pcap filename and the activity label.
Activities:
Interactive: applications that perform real-time interactions in order to provide a suitable user experience, such as editing a file in google docs and remote CLI's sessions by SSH. Bulk data transfer: applications that perform a transfer of large data volume files over the network. Some examples are SCP/FTP applications and direct downloads of large files from web servers like Mediafire, Dropbox or the university repository among others. Web browsing: contains all the generated traffic while searching and consuming different web pages. Examples of those pages are several blogs and new sites and the moodle of the university. Vídeo playback: contains traffic from applications that consume video in streaming or pseudo-streaming. The most known server used are Twitch and Youtube but the university online classroom has also been used. Idle behaviour: is composed by the background traffic generated by the user computer when the user is idle. This traffic has been captured with every application closed and with some opened pages like google docs, YouTube and several web pages, but always without user interaction.
The capture is performed in a network probe, attached to the router that forwards the user network traffic, using a SPAN port. The traffic is stored in pcap format with all the packet payload. In the csv file, every non TCP/UDP packet is filtered out, as well as every packet with no payload. The fields in the csv files are the following (one line per packet): Timestamp, protocol, payload size, IP address source and destination, UDP/TCP port source and destination. The fields are also included as a header in every csv file.
The amount of data is stated as follows:
Bulk : 19 traces, 3599 s of total duration, 8704 MBytes of pcap files Video : 23 traces, 4496 s, 1405 MBytes Web : 23 traces, 4203 s, 148 MBytes Interactive : 42 traces, 8934 s, 30.5 MBytes Idle : 52 traces, 6341 s, 0.69 MBytes
Raw Data in .csv format for use with the R data wrangling scripts.
Download Service provides pre-defined data on relationship between selected territorial elements and units of territorial registration using the ATOM technology. The service is publicly available and free-of-charge (data covers the whole territory of the Czech Republic) and enables downloading of predefined data file containing data for the whole Czech Republic. Files are created during the first day of each month with data valid to the last day of previous month. The whole dataset (7 files) is compressed (ZIP) for downloading.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The dataset has been collected in the frame of the Prac1 of the subject Tipology and Data Life Cycle of the Master's Degree in Data Science of the Universitat Oberta de Catalunya (UOC).
The dataset contains 25 variables and 52478 records corresponding to books on the GoodReads Best Books Ever list (the larges list on the site).
Original code used to retrieve the dataset can be found on github repository: github.com/scostap/goodreads_bbe_dataset
The data was retrieved in two sets, the first 30000 books and then the remainig 22478. Dates were not parsed and reformated on the second chunk so publishDate and firstPublishDate are representet in a mm/dd/yyyy format for the first 30000 records and Month Day Year for the rest.
Book cover images can be optionally downloaded from the url in the 'coverImg' field. Python code for doing so and an example can be found on the github repo.
The 25 fields of the dataset are:
| Attributes | Definition | Completeness |
| ------------- | ------------- | ------------- |
| bookId | Book Identifier as in goodreads.com | 100 |
| title | Book title | 100 |
| series | Series Name | 45 |
| author | Book's Author | 100 |
| rating | Global goodreads rating | 100 |
| description | Book's description | 97 |
| language | Book's language | 93 |
| isbn | Book's ISBN | 92 |
| genres | Book's genres | 91 |
| characters | Main characters | 26 |
| bookFormat | Type of binding | 97 |
| edition | Type of edition (ex. Anniversary Edition) | 9 |
| pages | Number of pages | 96 |
| publisher | Editorial | 93 |
| publishDate | publication date | 98 |
| firstPublishDate | Publication date of first edition | 59 |
| awards | List of awards | 20 |
| numRatings | Number of total ratings | 100 |
| ratingsByStars | Number of ratings by stars | 97 |
| likedPercent | Derived field, percent of ratings over 2 starts (as in GoodReads) | 99 |
| setting | Story setting | 22 |
| coverImg | URL to cover image | 99 |
| bbeScore | Score in Best Books Ever list | 100 |
| bbeVotes | Number of votes in Best Books Ever list | 100 |
| price | Book's price (extracted from Iberlibro) | 73 |
Free, daily updated MAC prefix and vendor CSV database. Download now for accurate device identification.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Netflix is a streaming service and production company. Crawl feeds team extracted more than 100 records from netflix for quality analysis purposes. Get in touch with crawl feeds team for complete dataset. Last extracted on 5 mar 2022
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Access the Home Depot products dataset, a comprehensive collection of web-scraped data featuring home improvement products. Discover trending tools, hardware, appliances, décor, and gardening essentials to enhance your projects. From power tools and building materials to lighting, furniture, and outdoor living items, this dataset provides insights into top-rated products, best-selling brands, and emerging trends.
Download now to explore detailed product data for smarter decision-making in home improvement, DIY, and construction projects.
For a closer look at the product-level data we’ve extracted from Home Depot, including pricing, stock status, and detailed specifications, visit the Home Depot dataset page. You can explore sample records and submit a request for tailored extracts directly from there.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Overview
The Walker Fall Detection Data Set is a curated compilation of inertial data designed for the study of fall detection systems, specifically for people using walking assistance. This data set offers deep insight into various movement patterns. It covers data from four different classes: idle, motion, step and fall.
This dataset was published as part of a research paper: Dataset and System Design for Orthopedic Walker Fall Detection and Activity Logging Using Motion Classification
Data Acquisition
Data was recorded using an IMU affixed to a walker, as illustrated in the image below:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15943143%2F134aaf57e284d20775d37ecdfa14d30e%2F20230712_163957.jpg?generation=1695049359163422&alt=media" alt="Walker">
The IMU used for this project is the Arduino Nano 33 BLE Sense. It's powered by a LiPo battery and is equipped with a voltage regulator and a dedicated battery charging circuit. To ensure durability and protection during the data recording phase, the entire prototype was securely housed in a custom 3D-printed casing.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15943143%2F0c8458d7bd161e983e1676e72d89085d%2F20230712_163957_2.jpg?generation=1695050869941377&alt=media" alt="">
The prototype was designed to transmit data wirelessly to a computer using Bluetooth Low Energy (BLE). Upon receipt, a Python script processed the incoming data and stored it in JSON format. The data transmission rate was optimized to achieve the highest possible rate, resulting in approximately 100 samples per second, covering both accelerometer and gyroscope data.
Data were collected from four different subjects, each of whom maneuvered the walker down a hallway, primarily capturing step and movement data. It is important to note that the “**idle**” data are not subject-specific, as it represents periods in which the walker is stationary. Similarly, “**fall**” data is also not linked to any particular individual; was obtained by deliberately pushing the walker from a vertical position to the ground.
Data Processing
This dataset contains four classes:
To effectively categorize the data, several processing steps were executed. Initially, the data was reduced from its original 100 samples per second to ensure a constant time step between samples, since the original rate was not uniformly constant. After this, both the acceleration and gyro data were normalized to one sample every 12.5 milliseconds, resulting in a rate of 80 samples per second. This normalization allowed the synchronization of acceleration and gyroscope data, which were subsequently stored in dictionaries in JSON format. Each dictionary contains the six dimensions (three acceleration and three gyro) corresponding to a specific timestamp.
To distinguish individual samples within each group, the root mean square (RMS) value of the six dimensions (comprising acceleration and gyroscope data) was calculated. Subsequently, an algorithm based on the hidden Markov model (HMM) was used to discern the hidden states inherent in the data, which facilitated the segmentation of the data set.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15943143%2F250182bc7b0c3ca0383ea79ac6e3224a%2Fhmm.jpg?generation=1695059033833835&alt=media" alt="">
Through the filtering process, the HMM effectively identifies individual steps. Once all steps were identified, the window size was determined based on the duration of each step. A window size of 160 samples was chosen, which, given a rate of 80 samples per second, is equivalent to a duration of 2 seconds for each sample.
A similar procedure is employed to extract "fall" samples. However, for "idle" and "motion" samples, isolation isn't necessary. Instead, samples from these categories can be arbitrarily chosen from the recorded clusters.
Final Dataset The finalized dataset is presented in CSV format. The first column serves as the label column and covers all four classes. In addition to this, the CSV file has 960 columns of functions. These columns encapsulate 160 samples each of acceleration and gyro data in the x, y, and z axes.
Each class contains 620 samples, bringing the overall total to 2480 samples across all classes.
Citation and Use
This dataset is associated with a research article currently un...
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset consists of timestamps for coughs contained in files extracted from the ESC-50 and FSDKaggle2018 datasets.
Citation
This dataset was generated and used in our paper:
Mahmoud Abdelkhalek, Jinyi Qiu, Michelle Hernandez, Alper Bozkurt, Edgar Lobaton, “Investigating the Relationship between Cough Detection and Sampling Frequency for Wearable Devices,” in the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2021.
Please cite this paper if you use the timestamps.csv file in your work.
Generation
The cough timestamps given in the timestamps.csv file were generated using the cough templates given in figures 3 and 4 in the paper:
A. H. Morice, G. A. Fontana, M. G. Belvisi, S. S. Birring, K. F. Chung, P. V. Dicpinigaitis, J. A. Kastelik, L. P. McGarvey, J. A. Smith, M. Tatar, J. Widdicombe, "ERS guidelines on the assessment of cough", European Respiratory Journal 2007 29: 1256-1276; DOI: 10.1183/09031936.00101006
More precisely, 40 files labelled as "coughing" in the ESC-50 dataset and 273 files labelled as "Cough" in the FSDKaggle2018 dataset were manually searched using Audacity for segments of audio that closely matched the aforementioned templates, both visually and auditorily. Some files did not contain any coughs at all, while other files contained several coughs. Therefore, only the files that contained at least one cough are included in the coughs directory. In total, the timestamps of 768 cough segments with lengths ranging from 0.2 seconds to 0.9 seconds were extracted.
Description
The audio files are presented in wav format in the coughs directory. Files named in the general format of "*-*-*-24.wav" were extracted from the ESC-50 dataset, while all other files were extracted from the FSDKaggle2018 dataset.
The timestamps.csv file contains the timestamps for the coughs and it consists of four columns:
file_name,cough_number,start_time,end_time
Files in the file_name column can be found in the coughs directory. cough_number refers to the index of the cough in the corresponding file. For example, if the file X.wav contains 5 coughs, then X.wav will be repeated 5 times under the file_name column, and for each row, the cough_number will range from 1 to 5. start_time refers to the starting time of a cough segment measured in seconds, while end_time refers to the end time of a cough segment measured in seconds.
Licensing
The ESC-50 dataset as a whole is licensed under the Creative Commons Attribution-NonCommercial license. Individual files in the ESC-50 dataset are licensed under different Creative Commons licenses. For a list of these licenses, see LICENSE. The ESC-50 files in the cough directory are given for convenience only, and have not been modified from their original versions. To download the original files, see the ESC-50 dataset.
The FSDKaggle2018 dataset as a whole is licensed under the Creative Commons Attribution 4.0 International license. Individual files in the FSDKaggle2018 dataset are licensed under different Creative Commons licenses. For a list of these licenses, see the License section in FSDKaggle2018. The FSDKaggle2018 files in the cough directory are given for convenience only, and have not been modified from their original versions. To download the original files, see the FSDKaggle2018 dataset.
The timestamps.csv file is licensed under the Creative Commons Attribution-NonCommercial 4.0 International license.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
10
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Gain access to a structured dataset featuring thousands of products listed on Amazon India. This dataset is ideal for e-commerce analytics, competitor research, pricing strategies, and market trend analysis.
Product Details: Name, Brand, Category, and Unique ID
Pricing Information: Current Price, Discounted Price, and Currency
Availability & Ratings: Stock Status, Customer Ratings, and Reviews
Seller Information: Seller Name and Fulfillment Details
Additional Attributes: Product Description, Specifications, and Images
Format: CSV
Number of Records: 50,000+
Delivery Time: 3 Days
Price: $149.00
Availability: Immediate
This dataset provides structured and actionable insights to support e-commerce businesses, pricing strategies, and product optimization. If you're looking for more datasets for e-commerce analysis, explore our E-commerce datasets for a broader selection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database collates 3552 development indicators from different studies with data by country and year, including single year and multiple year time series. The data is presented as charts, the data can be downloaded from linked project pages/references for each set, and the data for each presented graph is available as a CSV file as well as a visual download of the graph (both available via the download link under each chart).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains >800K CSV files behind the GitTables 1M corpus.
For more information about the GitTables corpus, visit:
- our website for GitTables, or