Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This Tutorial consists of four tutorials that deal with integrating the statistical programming language R with ArcGIS for Desktop. Several concepts are covered which include configuring ArcGIS with R, writing basic R scripts, writing R scripts that work with ArcGIS data, and constructing R Tools for use within ArcGIS Pro. It is recommended that the tutorials are completed in sequential order. Each of the four tutorials (as well as a version of this document), can viewed directly from your Web browser by following the links below. However, you must obtain a complete copy of the tutorial files by downloading the latest release (or by cloning the tutorial repository on GitHub) if you wish to follow the tutorials interactively using ArcGIS and R software, along with pre-configured sample data.To download the tutorial documents and datasets, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/r-arcgis-tutorials.gitSoftware & Solutions Used: ArcGIS Pro 3.4 Internet browser (e.g., Mozilla Firefox, Google Chrome, Safari) R Statistical Computing Language – version 4.3.3 R-ArcGIS Bindings – version 1.0.1.311RStudio Desktop – version 2024.09.0+375Time to Complete: 2.5 h (excludes installation time)File Size: 115 MBDate Created: November 2017Last Updated: December 2024
Para mais informações sobre o ARcGIS Desktop acesse:https://desktop.arcgis.com/en/quick-start-guides/latest/arcgis-desktop-quick-start-guide.htm
This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.
The way to access Layers Quickly.
Quick Layers is an Add-In for ArcMap 10.6+ that allows rapid access to the DNR's Geospatial Data Resource Site (GDRS). The GDRS is a data structure that serves core geospatial dataset and applications for not only DNR, but many state agencies, and supports the Minnesota Geospatial Commons. Data added from Quick Layers is pre-symbolized, helping to standardize visualization and map production. Current version: 1.164
To use Quick Layers with the GDRS, there's no need to download QuickLayers from this location. Instead, download a full copy or a custom subset of the public GDRS (including Quick Layers) using GDRS Manager.
Quick Layers also allows users to save and share their own pre-symbolized layers, thus increasing efficiency and consistency across the enterprise.
Installation:
After using GDRS Manager to create a GDRS, including Quick Layers, add the path to the Quick Layers addin to the list of shared folders:
1. Open ArcMap
2. Customize -> Add-In Manager… -> Options
3. Click add folder, and enter the location of the Quick Layers app. For example, if your GDRS is mapped to the V drive, the path would be V:\gdrs\apps\pub\us_mn_state_dnr\quick_layers
4. After you do this, the Quick Layers toolbar will be available. To add it, go to Customize -> Toolbars and select DNR Quick Layers 10
The link below is only for those who are using Quick Layers without a GDRS. To get the most functionality out of Quick Layers, don't install it separately, but instead download it as part of a GDRS build using GDRS Manager.
Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum
This FREE extension enables discovering and using GIS resources available in a GEOSS Clearinghouse directly from ArcGIS Desktop and ArcGIS Explorer. The CS-W Client for ArcGIS can search many implementations of CS-W implementing CS-W 2.0.0, 2.0.1, 2.0.2 and a number of Application Profiles (OGCCORE, APISO, EBRIM). Providers can extend the CS-W Client by creating a profile of their CS-W service and including that in the CS-W client configuration. View the title, abstract, or footprints of search results or view and download the full metadata. Add referenced live map services (ArcGIS Server, ArcIMS, WMS) to an ArcMap document or ArcGIS Explorer globe. ArcGIS Desktop 9.3 is required to install the ArcMap component of the CS-W Clients for ArcGIS. The CS-W Clients for ArcGIS component for ArcGIS Explorer requires ArcGIS Explorer 380 or higher.
U.S. Rivers and Streams represents detailed rivers and streams in the United States. Due to the very large number of features in this dataset, it has a minimum draw scale of 1:400,000.To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA Detailed Rivers and Streams.
Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.
ArcGIS and QGIS map packages, with ESRI shapefiles for the DSM2 Model Grid. These are not finalized products. Locations in these shapefiles are approximate.
Monitoring Stations - shapefile with approximate locations of monitoring stations.
7/12/2022: The document "DSM2 v8.2.1, historical version grid map release notes (PDF)" was corrected by removing section 4.4, which incorrectly stated that the grid included channels 710-714, representing the Toe Drain, and that the Yolo Flyway restoration area was included.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Moisture Index (MI) for the state of Utah is calculated from a spatial raster of annual actual (ETact) and potential (PET) evapotranspiration data from 2000 to 2013 derived from the MODIS instrumentation (Mu, Zhao, & Running, 2011; Mu, Zhao, & Running, 2013; Numerical Terradynamic Simulation Group, 2013). Moisture Index (MI) was created to compare the suitability of settlement locations throughout Utah to explain initial Euro-American settlement of the region. MI is one of two proxies created specifically for Utah for comparison of environmental productivity throughout the state. Moisture index (MI) was originally used by Ramankutty et al. (2002) on a global scale to understand probability of cultivation based on a series of environmental factors. The Ramankutty et al. (2002) methods were used to build a regional proxy of agricultural suitability for the state of Utah. Adapting the methods in Ramankutty et al. (2002), we were able to create a higher resolution dataset of MI specific to the state of Utah. Unlike S, MI only accounts for evapotranspiration rates.The Moisture Index is calculated as: MI = ETact / PET Where ETact is the actual evapotranspiration and PET is the potential evapotranspiration. This calculation results in a zero to one index representing global variation in moisture. MI is calculated for the study area (Utah) using a raster of annual actual (ETact) and potential (PET) evapotranspiration data from 2000 to 2013 derived from the MODIS instrumentation (Mu, Zhao, & Running, 2011; Mu, Zhao, & Running, 2013; Numerical Terradynamic Simulation Group, 2013). Using the ArcMap 10.3.1 Raster Calculator (Spatial Analyst), a raster dataset is created at a resolution of 2.6 kilometer square, which contain values representative of the average Moisture Index for Utah over a fourteen year period (ESRI, 2015). The data were collected remotely by satellite (MODIS) and represents reflective surfaces (urban areas, lakes, and the Utah Salt Flats) as null values in the dataset. Areas of null values that were not bodies of water are interpolated using Inverse Distance Weighting (3d Analyst) in ArcMap 10.3.1 (ESRI, 2015). Download the moisture index (MI) data below. If you have any questions or concerns, please contact me at PYaworsky89@gmail.com. Citations ESRI. (2015). ArcGIS Desktop: Release (Version 10.3.1). Redlands, CA: Environmental Systems Research Institute. Mu, Q., Zhao, M., & Running, S. W. (2013). MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theoretical Basis Document, Collection, 5. Retrieved from http://www.ntsg.umt.edu/sites/ntsg.umt.edu/files/MOD16_ATBD.pdf Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800. Numerical Terradynamic Simulation Group. (2013, July 29). MODIS Global Evapotranspiration Project (MOD16). University of Montana. Ramankutty, N., Foley, J. A., Norman, J., & Mcsweeney, K. (2002). The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Global Ecology and Biogeography, 11(5), 377–392. http://doi.org/10.1046/j.1466-822x.2002.00294.x
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:Find a location of interest.View the maps.Compare the maps.Download and share the maps or open them in ArcGIS Desktop (ArcGIS Pro or ArcMap) where places will appear in their correct geographic location. Save the maps in an ArcGIS Online web map.
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.Once signed in, users can create a web map with the current map view and any maps they have selected. The web map will open in ArcGIS Online. The title of the web map will be the same as the top map on the side panel of the app. All historical maps that were selected in the app will appear in the Contents section of the web map with the earliest at the top and the latest at the bottom. Turning the historical maps on and off or setting the transparency on the layers allows users to compare the historical maps over time. Also, the web map can be opened in ArcGIS Desktop (ArcGIS Pro or ArcMap) and used for exploration or data capture.Users can find out more about the USGS topograhic map collection and the app by clicking on the information button at the upper right. This opens a pop-up with information about the maps and app. The pop-up includes a useful link to a USGS web page that provides access to documents with keys explaining the symbols on historic and current USGS topographic maps. The pop-up also has a link to send Esri questions or comments about the map collection or the app.We have shared the updated app on GitHub, so users can download it and configure it to work with their own map collections.
World Regions represents the boundaries for 25 commonly recognized world regions. It provides a basemap layer of the regions for the world, delivering a straightforward method of selecting a small multi-country area for display or study.This layer is best viewed out beyond a scale of 1:3,000,000. The original source was extracted from the ArcWorld Supplemental database in 2001 and updated as country boundaries coincident to regional boundaries change.To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to World Regions.
This layer presents rural and urban interstate highways. It is part of the National Highway Planning Network, published by the Federal Highway Administration as part of the National Transportation Atlas Databases for the United States. It provides a comprehensive database of interstate highways from the nation's principal arterial highway system and the National Highway System. The data is generalized to improve draw performance and be used effectively at a national level. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA Interstate Highway and Freeway System.
Water bodies are a key element in the landscape. This layer provides a global map of large water bodies for use inlandscape-scale analysis. Dataset Summary This layer provides access to a 250m cell-sized raster of surface water created by extracting pixels coded as water in theGlobal Lithological Mapand theGlobal Landcover Map. The layer was created by Esri in 2014.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer hasquery,identify, andexportimage services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometerson a side or an area approximately the size of Europe. This layer is part of a larger collection oflandscape layersthat you can use to perform a wide variety of mapping and analysis tasks. TheLiving Atlas of the Worldprovides an easy way to explore the landscape layers and many otherbeautiful and authoritative maps on hundreds of topics. Geonetis a good resource for learning more aboutlandscape layers and the Living Atlas of the World. To get started see theLiving Atlas Discussion Group. TheEsri Insider Blogprovides an introduction to the Ecophysiographic Mapping project.
This layer presents the water feature areas of the United States. It provides the water bodies for geographic display and analysis at regional levels.To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA National Atlas Water Feature Areas - Water Bodies.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.
BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer.
This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
This map contains a number of world-wide dynamic image services providing access to various Landsat scenes covering the landmass of the World for visual interpretation. Landsat 8 collects new scenes for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free scenes are displayed by default on top. Most scenes collected since 1st January 2015 are included. The service also includes scenes from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).The service contains a range of different predefined renderers for Multispectral, Panchromatic as well as Pansharpened scenes. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range. This ArcGIS Server dynamic service can be used in Web Maps and ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can also export images, but the exported area is limited to maximum of 2,000 columns x 2,000 rows per request.Data Source: The imagery in these services is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). The data for these services reside on the Landsat Public Datasets hosted on the Amazon Web Service cloud. Users can access full scenes from https://github.com/landsat-pds/landsat_ingestor/wiki/Accessing-Landsat-on-AWS, or alternatively access http://landsatlook.usgs.gov to review and download full scenes from the complete USGS archive.For more information on Landsat 8 images, see http://landsat.usgs.gov/landsat8.php.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit http://landsat.usgs.gov/science_GLS.php.For more information on each of the individual layers, see http://www.arcgis.com/home/item.html?id=d9b466d6a9e647ce8d1dd5fe12eb434b ; http://www.arcgis.com/home/item.html?id=6b003010cbe64d5d8fd3ce00332593bf ; http://www.arcgis.com/home/item.html?id=a7412d0c33be4de698ad981c8ba471e6
This shaded relief image was generated from the lidar-based bare-earth digital elevation model (DEM). A shaded relief image provides an illustration of variations in elevation using artificial shadows. Based on a specified position of the sun, areas that would be in sunlight are highlighted and areas that would be in shadow are shaded. In this instance, the position of the sun was assumed to be 45 degrees above the northwest horizon.The shaded relief image shows areas that are not in direct sunlight as shadowed. It does not show shadows that would be cast by topographic features onto the surrounding surface.Using ERDAS IMAGINE, a 3X3 neighborhood around each pixel in the DEM was analyzed, and a comparison was made between the sun's position and the angle that each pixel faces. The pixel was then assigned a value between -1 and +1 to represent the amount of light reflected. Negative numbers and zero values represent shadowed areas, and positive numbers represent sunny areas. In ArcGIS Desktop 10.7.1, the image was converted to a JPEG 2000 format with values from 0 (black) to 255 (white).See the MassGIS datalayer page to download the data as a JPEG 2000 image file.View this service in the Massachusetts Elevation Finder.MassGIS has also published a Lidar Shaded Relief tile service (cache) hosted in ArcGIS Online.
This map contains a number of world-wide dynamic image services providing access to various Landsat scenes covering the landmass of the World for visual interpretation. Landsat 8 collects new scenes for each location on Earth every 16 days, assuming limited cloud coverage. Newest and near cloud-free scenes are displayed by default on top. Most scenes collected since 1st January 2015 are included. The service also includes scenes from the Global Land Survey* (circa 2010, 2005, 2000, 1990, 1975).The service contains a range of different predefined renderers for Multispectral, Panchromatic as well as Pansharpened scenes. The layers in the service can be time-enabled so that the applications can restrict the displayed scenes to a specific date range. This ArcGIS Server dynamic service can be used in Web Maps and ArcGIS Desktop, Web and Mobile applications using the REST based image services API. Users can also export images, but the exported area is limited to maximum of 2,000 columns x 2,000 rows per request.Data Source: The imagery in these services is sourced from the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). The data for these services reside on the Landsat Public Datasets hosted on the Amazon Web Service cloud. Users can access full scenes from https://github.com/landsat-pds/landsat_ingestor/wiki/Accessing-Landsat-on-AWS, or alternatively access http://landsatlook.usgs.gov to review and download full scenes from the complete USGS archive.For more information on Landsat 8 images, see http://landsat.usgs.gov/landsat8.php.*The Global Land Survey includes images from Landsat 1 through Landsat 7. Band numbers and band combinations differ from those of Landsat 8, but have been mapped to the most appropriate band as in the above table. For more information about the Global Land Survey, visit http://landsat.usgs.gov/science_GLS.php.For more information on each of the individual layers, see http://www.arcgis.com/home/item.html?id=d9b466d6a9e647ce8d1dd5fe12eb434b ; http://www.arcgis.com/home/item.html?id=6b003010cbe64d5d8fd3ce00332593bf ; http://www.arcgis.com/home/item.html?id=a7412d0c33be4de698ad981c8ba471e6
What is unique about LA County’s data?It is clipped to the ocean boundary. Raw Census data includes a 3 mile buffer into the ocean, which impacts cartography.IMPORTANT! It has been updated to the 2012 Census Geography Update, which merged Tracts 1370.00 and 9304.01 into the combined tract 1370.00. So the CT10 field actually reflects the 2012 Census update, which is used for all population products 2012 and later.How was this data created?This data was downloaded from Census Bureau website: http://www.census.gov/cgi-bin/geo/shapefiles2010/file-download and clipped to the County Boundary using ESRI’s ArcGIS Desktop. Two new fields were added in census tract data – area in square feet and shape length in feet. This dataset has unique identifier field “GEOID10” for each record and the census tract number fields “CT10” and “LABEL” (6-digit number and 6-digit number with decimal point, respectively).
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This Tutorial consists of four tutorials that deal with integrating the statistical programming language R with ArcGIS for Desktop. Several concepts are covered which include configuring ArcGIS with R, writing basic R scripts, writing R scripts that work with ArcGIS data, and constructing R Tools for use within ArcGIS Pro. It is recommended that the tutorials are completed in sequential order. Each of the four tutorials (as well as a version of this document), can viewed directly from your Web browser by following the links below. However, you must obtain a complete copy of the tutorial files by downloading the latest release (or by cloning the tutorial repository on GitHub) if you wish to follow the tutorials interactively using ArcGIS and R software, along with pre-configured sample data.To download the tutorial documents and datasets, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/r-arcgis-tutorials.gitSoftware & Solutions Used: ArcGIS Pro 3.4 Internet browser (e.g., Mozilla Firefox, Google Chrome, Safari) R Statistical Computing Language – version 4.3.3 R-ArcGIS Bindings – version 1.0.1.311RStudio Desktop – version 2024.09.0+375Time to Complete: 2.5 h (excludes installation time)File Size: 115 MBDate Created: November 2017Last Updated: December 2024