This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
These topographic/bathymetric digital elevation models (DEMs) were collected and compiled to characterize erosion and deposition in the Colorado River and in an adjacent zone of laterally recirculating flow (eddy) during both average flow conditions and during a controlled flood that occurred in March 2008. The objectives of the study were to measure changes sandbar morphology that occurred during changes in discharge associated with the controlled flood. These data were collected between February 6 and March 31, 2008 in a 1-mile study reach on the Colorado River within Grand Canyon National Park beginning 44.5 miles downstream from Lees Ferry, Arizona. These data were collected by the USGS Grand Canyon Monitoring and Research Center with cooperators from Northern Arizona University and funding provided by the Glen Canyon Dam Adaptive Management Program. All bathymetric data were collected with a multibeam sonar system (Reson Seabat 8124 sonar with TSS MAHRSS reference system for heave, pitch, roll, and heading). Topographic data were collected by conventional total station. These data can be used to study changes in channel morphology associated with changes in streamflow conditions.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/9 arc-second (approximately 3 m) resolution.The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/9 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless 1/9 arc-second DEM layer project-based coverage for portions of the conterminous United States, limited areas of Alaska, and Guam. The seamless 1/9 arc-second NED layer is available as pre-staged products tiled in 15 minute blocks in Erdas .img format. Since 2015, the seamless 1/9 arc-second DEM layer is no longer being updated. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include one-meter DEMs produced exclusively from high resolution light detection and ranging (lidar) source data and five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
This is a dataset download, not a document. The Open button will start the download.Digital Elevation Model. 10m pixels. Elevation values in feet. Elevation data assembled from merged 7.5-minute DEM blocks (10- by 10-m data spacing).
This is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain.
This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here.
Click here for a broad overview of this dataset
A global 1-km resolution land surface digital elevation model (DEM) derived from U.S. Geological Survey (USGS) 30 arc-second SRTM30 gridded DEM data created from the NASA Shuttle Radar Topography Mission (SRTM). GTOPO30 data are used for high latitudes where SRTM data are not available. For a grayscale hillshade image layer of this dataset, see "world_srtm30plus_dem1km_hillshade" in the distribution links listed in the metadata.
This dataset contains the Digital Elevation Model (DEM) for Africa from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The DEM data were developed and distributed by processing units. There are 19 processing units for Africa. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. af_dem_3_2.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) and the Shuttle Radar Topography Mission (SRTM). For most of the globe south of 60º North, the raster resolution of the data is 3-arc-seconds, corresponding to the resolution of the SRTM. For the areas North of 60º, the resolution is 7.5-arc-seconds (the smallest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30-arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information.
This data set consists of a set of 136 ESRI formatted GRID data sets representing elevations in meters for the state of Arizona. Each file covers a half degree block and as a collection they cover the entire State of Arizona. The data were created by processing U.S.Geological Survey 30 meter Digital Elevation Model files for all of the 7.5 minute quadrangle map areas in Arizona. The processing produced ESRI formatted lattices (GRIDs) for each quadrangle. These were then merged into the half degree blocks.
7.5 Minute Digital Elevation Model for the state of Arizona. Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a regular array of elevations cast on a designated coordinate projection system. The DEM data are stored as a series of profiles in which the spacing of the elevations along and between each profile is in regular whole number intervals. The normal orientation of data is by columns and rows. Each column contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A-record), followed by a series of profile records (B-records) each of which include a short B-record header followed by a series of ASCII integer elevations per each profile. The last physical record of the DEM is an accuracy record (C-record). The DEM for 7.5-minute units correspond to the USGS 1:24000 scale topographic quadrangle map series for all of the United States and its territories. Each 7.5 minute DEM is based on 30- by 30-meter data spacing with Universal Transverse Mercator(UTM) projection. Each 7.5- by 7.5-minute block provides the same coverage as the standard USGS 7.5-minute map series.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipThis grid dataset is a digital-elevation model (DEM) for Ohio and portions of Pennsylvania, West Virginia, Kentucky, Indiana, and Michigan. The grid dataset was initially extracted from the United States Geological Survey (USGS) National Elevation Dataset (NED), which has a grid cell size of 30 meters.
Even though the NED dataset was produced to provide a seamless and consistent DEM data across the United States, there were still visible errors associated with USGS Level 1 DEM's. These errors were removed and replaced with new grids derived from the USGS Digital Line Graph (DLG) hypsography. The resulting DEM will be used in the analysis of geological features with respect to the earth's surface, and will be one component of cartographic basemaps.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesOffice of Information TechnologyGIS Records2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov
The 3D Elevation Program (3DEP) data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. This dataset is a 1 meter resolution, tiled collection of 3DEP project-based data. This dataset was introduced in 2015 with limited coverage of the U.S., but will be expanding as new DEMs from 3DEP quality level 2 or better lidar data are acquired. USGS standard one-meter DEMs are produced exclusively from high resolution lidar source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Data is distributed in the UTM Zone in which it lies. All 3DEP products are public domain. Click here for a broad overview of this dataset
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This web map leverages the KyFromAbove 5 foot Digital Elevation Model (DEM) ArcGIS Server Image Service and provides a 5K tiling grid with embedded links for downloading individual DEM tiles from Phase 1, Phase 2 and Phase3 collection periods. Each of the Phase1 DEM tiles are provided in an ERDAS Imagine (IMG) format and is zipped up with its associated metadata file in XML format. Phase2 and Phase3 DEM tiles are provided in a GeoTIFF format. The Phase1 data resource was derived from the ground class within KyFromAbove point cloud data and has a 5-foot point spacing. The Phase2 and Phase3 data was derived from the ground class within KyFromAbove point cloud data and has a 2-foot point spacing. DEM data specifications adopted by the KyFromAbove Technical Advisory Committee can be found here. More information regarding this data resource can be found on the KyFromAbove website.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains the Digital Elevation Model (DEM) for South America from the Hydrologic Derivatives for Modeling and Analysis (HDMA) database. The data were developed and distributed by processing units. There are 10 processing units for South America. The distribution files have the number of the processing unit appended to the end of the zip file name (e.g. sa_dem_3.zip contains the DEM data for unit 3-2). The HDMA database provides comprehensive and consistent global coverage of raster and vector topographically derived layers, including raster layers of digital elevation model (DEM) data, flow direction, flow accumulation, slope, and compound topographic index (CTI); and vector layers of streams and catchment boundaries. The coverage of the data is global (-180º, 180º, -90º, 90º) with the underlying DEM being a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), Global Multi-resolution Terrain Eleva ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.
For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
Project name: H-GAC 2008 1m
Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours
Points per sq meter: 1
Total area: 3678.56 sq miles
Source: Houston-Galveston Area Council (H-GAC)
Acquired by: Merrick, QA/QC: Merrick
Catalog: houston-galveston-area-council-h-gac-2008-lidar
References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This collection is a legacy product that is no longer supported. It may not meet current government standards. The Canadian Digital Elevation Model (CDEM) is part of Natural Resources Canada's altimetry system designed to better meet the users' needs for elevation data and products. The CDEM stems from the existing Canadian Digital Elevation Data (CDED). In these data, elevations can be either ground or reflective surface elevations. A CDEM mosaic can be obtained for a pre-defined or user-defined extent. The coverage and resolution of a mosaic varies according to latitude and to the extent of the requested area. Derived products such as slope, shaded relief and colour shaded relief maps can also be generated on demand by using the Geospatial-Data Extraction tool. Data can then be saved in many formats. The pre-packaged GeoTiff datasets are based on the National Topographic System of Canada (NTS) at the 1:250 000 scale; the NTS index file is available in the Resources section in many formats.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Layers include: various DEM derivatives computed using SAGA GIS at 250 m and using MERIT DEM (Yamazaki et al., 2017) as input. Antartica is not included. MERIT DEM was first reprojected to 6 global tiles based on the Equi7 grid system (Bauer-Marschallinger et al. 2014) and then these were used to derive all DEM derivatives. To access original DEM tiles please refer to MERIT DEM download page.
To access and visualize maps use: OpenLandMap.org
If you discover a bug, artifact or inconsistency in the maps, or if you have a question please use some of the following channels:
All files internally compressed using "COMPRESS=DEFLATE" creation option in GDAL. File naming convention:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is a 10 m-resolution DEM in grid format covering the whole Italian territory. The DEM is encoded as “ESRI ASCII Raster” obtained by interpolating the original DEM in Triangular Irregular Network (TIN) format. The TIN version benefited from the systematic application of the DEST algorithm. The projection is UTM, the World Geodetic System 1984 (WGS 84). To provide the dataset as a single seamless DEM, the sole zone 32 N was selected, although about half of Italy belongs to zone 33 N. The database is arranged in 193 square tiles having 50 km side. Data e Risorse Questo dataset non ha dati ambiente terremoti vulcani
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. This DSM is derived from an edited DSM named WorldDEM, where flattening of water bodies and consistent flow of rivers has been included. In addition, editing of shore- and coastlines, special features such as airports, and implausible terrain structures has also been applied.
The WorldDEM product is based on the radar satellite data acquired during the TanDEM-X Mission, which is funded by a Public Private Partnership between the German State, represented by the German Aerospace Centre (DLR) and Airbus Defence and Space. OpenTopography is providing access to the global GLO-90 Defence Gridded Elevation Data (DGED) 2023_1 version of the data hosted by ESA via the PRISM service. Details on the Copernicus DSM can be found on this ESA site.
This raster dataset contains LiDAR-derived elevation data flown from Fall 2015 to Spring 2016, with additional reflights through Fall 2016. This dataset encompasses all of the LARIAC4 project, comprised of approximately 4214 square miles.
The NOAA Office for Coastal Management (OCM) downloaded this digital elevation model (DEM) data from the USGS site: ftp://rockyftp.cr.usgs.gov/vdelivery/Data...
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.