A terrain surface dataset that represents the height value of all natural and built features of the surface of the city. Each pixel within the image contains an elevation value in accordance with the Australian Height Datum (AHD).
The data has been captured in May 2018 as GeoTiff files, and covers the entire municipality.
A KML tile index file can be found in the attachments to indicate the location of each tile, along with a sample image.
Capture Information:
Capture Pixel Resolution: 0.1 metres
Limitations:
Whilst every effort is made to provide the data as accurate as possible, the content may not be free from errors, omissions or defects.
Preview:
Download:
A zip file containing all relevant files representing the Digital Surface Model
Download Digital Surface Model data (12.0GB)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Digital Surface Model - 1m resolution. The dataset contains the 1m Digital Surface Model for the Washington Area. Voids exist in the data due to data redaction conducted under the guidance of the United States Secret Service. All lidar data returns and collected data were removed from the dataset based on the redaction footprint shapefile generated in 2017. This dataset provided as an ArcGIS Image service. Please note, the download feature for this image service in Open Data DC provides a compressed PNG, JPEG or TIFF. The compressed GeoTIFF raster dataset is available under additional options when viewing downloads.
A terrain surface dataset that represents the height value of all natural and built features of the surface of the city. Each pixel within the image contains an elevation value in accordance with …Show full descriptionA terrain surface dataset that represents the height value of all natural and built features of the surface of the city. Each pixel within the image contains an elevation value in accordance with the Australian Height Datum (AHD). The data has been captured in May 2018 as GeoTiff files, and covers the entire municipality. A KML tile index file can be found in the attachments to indicate the location of each tile, along with a sample image. Capture Information: Capture Pixel Resolution: 0.1 metres Limitations: Whilst every effort is made to provide the data as accurate as possible, the content may not be free from errors, omissions or defects.Preview: Download:A zip file containing all relevant files representing the Digital Surface ModelDownload Digital Surface Model data (12.0GB)
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Zoom in on the map above and click your area of interest or use the Tile Index linked below to determine which package(s) you require for download. Note that the products from the SWOOP 2010 project are not currently packaged for download. To order data from this project see LIO Support – Large Data Ordering Instructions. Data sizes are listed below.
The Digital Surface Models (DSM) are raster elevation products that were generated from the elevation point clouds created via pixel-correlation from aerial photography. A DSM is the highest reflective surface of ground features captured by the sensor. This surface may also be referred to as the first reflective surface. The DSM may include treetops, rooftops, and tops of towers, telephone poles, and other natural or artificial features; or it may include the ground surface if there is no vegetative ground cover.
For more detailed information about this dataset, refer to the associated User Guide.
Now also available through a web service which exposes the data for visualization, geoprocessing and limited download. The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connection using the REST endpoint URL. The service draws using the Web Mercator projection.
For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca.
Service Endpoints
https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DSM_ImageryDerived/ImageServer https://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DSM_ImageryDerived/ImageServer (Government of Ontario Internal Users)
Additional Documentation
Ontario DSM (Imagery-Derived) - User Guide (Word)
Ontario DSM (Imagery-Derived) - Tile Index (SHP)
SCOOP 2013 DSM - Vertical Accuracy Assessment (Word) SCOOP 2013 DSM - Vertical Accuracy Assessment - Data (SHP)
Product Packages
SWOOP 2010 - Chatham-Kent - 3.63 GB SWOOP 2010 - Elgin - 4.96 GB SWOOP 2010 - Essex - 5.0 GB SWOOP 2010 - Huron - 7.55 GB SWOOP 2010 - Lambton - 8.92 GB SWOOP 2010 - Middlesex
Data Package Download Links for the Ontario DSM (Imagery-Derived) (Word) SCOOP 2013 DRAPE 2014 SWOOP 2015 SCOOP 2018 DRAPE 2019 SWOOP 2020 COOP 2021 NWOOP 2022
Status On going: Data is continually being updated
Maintenance and Update Frequency As needed: Data is updated as deemed necessary
Contact Ministry of Natural Resources - Geospatial Ontario, geospatial@ontario.ca
This portion of the data release presents a digital surface model (DSM) and digital elevation model (DEM) of the exposed Los Padres Reservoir delta where the Carmel River enters the reservoir. The DSM and DEM have a resolution of 10 centimeters per pixel and were derived from structure-from-motion (SfM) processing of aerial imagery collected with an unoccupied aerial system (UAS) on 2017-11-01. The DSM represents the elevation of the highest object within the bounds of a cell, including vegetation, woody debris and other objects. The DEM represent the elevation of the ground surface where it was visible to the acquisiton system. Due to the nature of SfM processing, the DEM may not represent a true bare-earth surface in areas of thick vegetation cover; in these areas some DEM elevations may instead represent thick vegetation canopy. The raw imagery used to create these elevation models was acquired with a UAS fitted with a Ricoh GR II digital camera featuring a global shutter. The UAS was flown on pre-programmed autonomous flight lines spaced to provide approximately 70 percent overlap between images from adjacent lines. The camera was triggered at 1 Hz using a built-in intervalometer. The UAS was flown at an approximate altitude of 100 meters above ground level (AGL), resulting in a nominal ground-sample-distance (GSD) of 2.6 centimeters per pixel. The raw imagery was geotagged using positions from the UAS onboard single-frequency autonomous GPS. Twenty temporary ground control points (GCPs) consisting of small square tarps with black-and-white cross patterns were distributed throughout the area to establish survey control. The GCP positions were measured using real-time kinematic (RTK) GPS, using corrections from a GPS base station located on a benchmark designated SFML, located approximately 1 kilometer from the study area. The DSM and DEM have been formatted as cloud optimized GeoTIFFs with internal overviews and masks to facilitate cloud-based queries and display.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
https://eidc.ceh.ac.uk/licences/OGLtellus/plainhttps://eidc.ceh.ac.uk/licences/OGLtellus/plain
This is a high resolution spatial dataset of Digital Surface Model (DSM) data in South West England. It is a part of outcomes from the CEH South West (SW) Project. There is also a Digital Terrain Model (DTM) dataset covering the same areas available from the SW project. Both DTM and DSM cover an area of 9424 km2 that includes all the land west of Exmouth (i.e. west of circa 3 degrees 21 minutes West). The DSM includes the height of features on the bare earth such as buildings or vegetation (if present). An overview of the TELLUS project is available on the web at http://www.tellusgb.ac.uk/.
https://www.ign.es/resources/licencia/Condiciones_licenciaUso_IGN.pdfhttps://www.ign.es/resources/licencia/Condiciones_licenciaUso_IGN.pdf
Digital Surface Model (DSM) has three layers. Two layers come from the rasterisation of the building and vegetation classes among all the points of the LiDAR file .las; and the third layer is the hydrography of the Geographical Reference Information. By applying a suitable colour for each layer, the final product is visualised. ECW file format. ETRS89 reference geodetic system (in the Canary Islands REGCAN95, compatible with ETRS89) and EPSG projection: 3857 throughout the national territory
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In the scope of the International Civil Aviation Organization (ICAO) requiring countries and airports to provide electronic Terrain and Obstacle Data (eTOD), the Administration de la navigation aérienne has been tasked by the Government to take the steps necessary to comply with this requirement. This Digital Surface Model (DSM) is the result of a first LIDAR survey flight that has been done in October 2017 and is of a higher resolution than required by ICAO, thus for general purpose. For this reason this DSM also uses the national reference systems LUREF and NGL. The data itself is split up in 4 different areas, which are specified as follows: Area 1: The entire territory of Luxembourg; Area 2: Terminal Control Area (this area is larger than the territory of Luxembourg); Area 3: Aerodrome movement area; Area 4: Category II or III operations (Runway 24). The different areas come with different numerical requirements, such as data accuracy and resolution. Follow the links in the description or consult metadata for further Information.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite First Return DSM (Digital Surface Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The first return DSM is produced from the first or only laser pulse returned to the sensor and includes heights of objects, such as vehicles, buildings and vegetation, as well as the terrain surface where the first or only return was the ground.
Produced by the Environment Agency in 2022, the first return DSM is derived from data captured as part of our national LIDAR programme between 11 November 2016 and 5th May 2022. This programme divided England into ~300 blocks for survey over continuous winters from 2016 onwards. These surveys are merged together to create the first return LIDAR composite using a feathering technique along the overlaps to remove any small differences in elevation between surveys. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The first return DSM will not match in coverage or extent of the LIDAR composite last return digital surface model (LZ_DSM) as the last return DSM composite is produced from both the national LIDAR programme and Timeseries surveys.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Zoom in on the map above and click your area of interest or use the Tile Index linked below to determine which package(s) you require for download. The DSM data is available in the form of 1-km by 1-km non-overlapping tiles grouped into packages for download.This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters and sensors may vary by project. See the detailed User Guide linked below for additional information.
You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page.
Now also available through a web service which exposes the data for visualization, geoprocessing and limited download. The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connectionusing the REST endpoint URL. The service draws using the Web Mercator projection.
For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca.
Service Endpoints
https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DSM_LidarDerived/ImageServer https://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DSM_LidarDerived/ImageServer (Government of Ontario Internal Users)
Additional Documentation
Ontario DSM (Lidar-Derived) - User Guide (DOCX)
OMAFRA Lidar 2016-2018 -Cochrane-Additional Contractor Metadata (PDF) OMAFRA Lidar 2016-2018 -Peterborough-AdditionalContractorMetadata (PDF) OMAFRA Lidar 2016-2018 -Lake Erie-AdditionalContractorMetadata (PDF) CLOCA Lidar 2018 - Additional Contractor Metadata (PDF) South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF) OMAFRA Lidar 2022 - Lake Huron - Additional Contractor Metadata (PDF) OMAFRA Lidar 2022 - Lake Simcoe - Additional Contractor Metadata (PDF) Huron-Georgian Bay Lidar 2022-23 - Additional Contractor Metadata (Word) Kawartha Lakes Lidar 2023 - Additional Contractor Metadata (Word) Sault Ste Marie Lidar 2023-24 - Additional Contractor Metadata (Word) Thunder Bay Lidar 2023-24 - Additional Contractor Metadata (Word) Timmins Lidar 2024 - Additional Contractor Metadata (Word)
Ontario DSM (Lidar-Derived) - Tile Index (SHP) Ontario Lidar Project Extents (SHP)
Product Packages Download links for the Ontario DSM (Lidar-Derived) (Word) Projects:
LEAP 2009 GTA 2014-18 OMAFRA 2016-18 CLOCA 2018 South Nation CA 2018-19 Muskoka 2018-23 York-Lake Simcoe 2019 Ottawa River 2019-20 Ottawa-Gatineau 2019-20 Lake Nipissing 2020 Hamilton-Niagara 2021 Huron Shores 2021 Eastern Ontario 2021-22 OMAFRA Lake Huron 2022 OMAFRA Lake Simcoe 2022 Belleville 2022 Digital Elevation Data to Support Flood Mapping 2022-26 Huron-Georgian Bay 2022-23 Kawartha Lakes 2023 Sault Ste Marie 2023-24 Sudbury 2023-24 Thunder Bay 2023-24 Timmins 2024
Greater Toronto Area Lidar 2023
Status On going: Data is continually being updated
Maintenance and Update Frequency As needed: Data is updated as deemed necessary
Contact Ontario Ministry of Natural Resources - Geospatial Ontario,geospatial@ontario.ca
Digital Surface Model - 1m resolution. The dataset contains the 1m Digital Surface Model for the District of Columbia. Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. Except for classified ground points and classified water points, all lidar data returns and collected data were removed from the dataset within the United States Secret Service 1m redaction boundary generated for the 2017 orthophoto flight. This dataset provided as an ArcGIS Image service. Please note, the download feature for this image service in Open Data DC provides a compressed PNG, JPEG or TIFF. The compressed GeoTIFF mosaic raster dataset is available under additional options when viewing downloads. Requests for the individual GeoTIFF set of images should be sent to open.data@dc.gov.
https://www.ign.es/resources/licencia/Condiciones_licenciaUso_IGN.pdfhttps://www.ign.es/resources/licencia/Condiciones_licenciaUso_IGN.pdf
Digital Surface Model Normalized with the building class corresponding to the first coverage. Grid 2,5 meters. ASCII matrix file format ESRI (asc). Reference geodetic system ETRS89 (in the Canary Islands REGCAN95, compatible with ETRS89) and UTM projection. The DTM has been obtained by interpolating the height of the 3D point clouds of the LIDAR file classified as "buildings" taking the DTM as level 0. With the exception of Andorra, Ceuta, Melilla, Alboran Island (183-2, 1110-3, 1111-3, 1078B) . Available at the download centre (ASCII format) and via the WCS download service (various formats).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Normalized Digital Surface Model - 1m resolution. The dataset contains the Normalized Digital Surface Model for the Washington Area. Voids exist in the data due to data redaction conducted under the guidance of the United States Secret Service. All lidar data returns and collected data were removed from the dataset based on the redaction footprint shapefile generated in 2017. This dataset provided as an ArcGIS Image service. Please note, the download feature for this image service in Open Data DC provides a compressed PNG, JPEG or TIFF. The compressed GeoTIFF raster dataset is available under additional options when viewing downloads.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Normalizd Digital Surface Model - 1m resolution. The dataset contains the 1m Digital Surface Model for the District of Columbia. Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. Except for classified ground points and classified water points, all lidar data returns and collected data were removed from the dataset within the United States Secret Service 1m redaction boundary generated for the 2017 orthophoto flight. This dataset is provided as an ArcGIS Image service. Please note, the download feature for this image service in Open Data DC provides a compressed PNG, JPEG or TIFF. The compressed GeoTIFF mosaic raster dataset is available under additional options when viewing downloads. Requests for the individual GeoTIFF set of images should be sent to open.data@dc.gov.
The Copernicus DEM is a Digital Surface Model (DSM) which represents the surface of the Earth including buildings, infrastructure and vegetation. This DSM is derived from an edited DSM named WorldDEM, where flattening of water bodies and consistent flow of rivers has been included. In addition, editing of shore- and coastlines, special features such as airports, and implausible terrain structures has also been applied.
The WorldDEM product is based on the radar satellite data acquired during the TanDEM-X Mission, which is funded by a Public Private Partnership between the German State, represented by the German Aerospace Centre (DLR) and Airbus Defence and Space. OpenTopography is providing access to the global 90m (GLO-90) DSM through the public AWS S3 bucket established by Sinergise.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Ontario Digital Surface Model (DSM) (Lidar-Derived) Land Information Ontario dataset is a raster product that provides a representation of both surface and ground features derived from a classified lidar point cloud. A DSM is the highest reflective surface of features captured by the sensor. This surface is also referred to as the first reflective surface. The DSM may include: * treetops * rooftops and tops of towers * telephone poles * other natural or artificial features * ground surface if there is no vegetative ground cover The DSM data is available in 1 km by 1 km non-overlapping tiles grouped into packages for download. This dataset is a compilation of lidar data from multiple acquisition projects, so specifications, parameters and sensors may vary by project. This data is for geospatial tech specialists, and is used by government, municipalities, conservation authorities and the private sector for land use planning and environmental analysis.
A global 1-km resolution land surface digital elevation model (DEM) derived from U.S. Geological Survey (USGS) 30 arc-second SRTM30 gridded DEM data created from the NASA Shuttle Radar Topography Mission (SRTM). GTOPO30 data are used for high latitudes where SRTM data are not available. For a grayscale hillshade image layer of this dataset, see "world_srtm30plus_dem1km_hillshade" in the distribution links listed in the metadata.
A terrain surface dataset that represents the height value of all natural and built features of the surface of the city. Each pixel within the image contains an elevation value in accordance with the Australian Height Datum (AHD).
The data has been captured in May 2018 as GeoTiff files, and covers the entire municipality.
A KML tile index file can be found in the attachments to indicate the location of each tile, along with a sample image.
Capture Information:
Capture Pixel Resolution: 0.1 metres
Limitations:
Whilst every effort is made to provide the data as accurate as possible, the content may not be free from errors, omissions or defects.
Preview:
Download:
A zip file containing all relevant files representing the Digital Surface Model
Download Digital Surface Model data (12.0GB)