7 datasets found
  1. d

    HUC8 - CONUS Shapefile

    • dataone.org
    • hydroshare.org
    • +1more
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle Tijerina (2021). HUC8 - CONUS Shapefile [Dataset]. https://dataone.org/datasets/sha256%3A4200cfccdc2c3729d0b3d4e7f634f5608875a698ef63d25bac7c8637fa4171e9
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Hydroshare
    Authors
    Danielle Tijerina
    Area covered
    Description

    This resource contains a shapefile of HUC-8 (eight digit Hydrologic Unit Codes) for the Continental United States (CONUS).

    The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" “Standard” (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.

  2. d

    Watershed Boundary Dataset (WBD) - USGS National Map Downloadable Data...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Watershed Boundary Dataset (WBD) - USGS National Map Downloadable Data Collection [Dataset]. https://catalog.data.gov/dataset/watershed-boundary-dataset-wbd-usgs-national-map-downloadable-data-collection
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" "Standard" (https://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications. For additional information on NHD, go to https://www.usgs.gov/national-hydrography.

  3. a

    Watershed Boundary HUC 10

    • new-york-opd-geographic-information-gateway-nysdos.hub.arcgis.com
    • opdgig.dos.ny.gov
    Updated Nov 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of State (2022). Watershed Boundary HUC 10 [Dataset]. https://new-york-opd-geographic-information-gateway-nysdos.hub.arcgis.com/datasets/7c72ba7ff76745c88702d4c612bb1181
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset authored and provided by
    New York State Department of State
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    The United States is divided and sub-divided into successively smaller hydrologic units which are classified into four levels: regions, subregions, accounting units, and cataloging units. The hydrologic units are arranged or nested within each other, from the largest geographic area (regions) to the smallest geographic area (cataloging units). Each hydrologic unit is identified by a unique hydrologic unit code (HUC) consisting of two to eight digits based on the four levels of classification in the hydrologic unit system. The intent of defining Hydrologic Units (HU) within the Watershed Boundary Dataset is to establish a base-line drainage boundary framework, accounting for all land and surface areas. Hydrologic units are intended to be used as a tool for water-resource management and planning activities particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The WBD complements the National Hydrography Dataset (NHD) and supports numerous programmatic missions and activities including: watershed management, rehabilitation and enhancement, aquatic species conservation strategies, flood plain management and flood prevention, water-quality initiatives and programs, dam safety programs, fire assessment and management, resource inventory and assessment, water data analysis and water census. The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" "Standard" (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.View Dataset on the Gateway

  4. i

    Watershed Boundary Dataset of Iowa

    • geodata.iowa.gov
    • hub.arcgis.com
    Updated Jan 1, 2008
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Natural Resources (2008). Watershed Boundary Dataset of Iowa [Dataset]. https://geodata.iowa.gov/documents/d2634651748f4bfa8b801e33e0393db7
    Explore at:
    Dataset updated
    Jan 1, 2008
    Dataset authored and provided by
    Iowa Department of Natural Resources
    Area covered
    Iowa
    Description

    This data set is a complete digital hydrologic unit boundary layer to the Subwatershed (12-digit) 6th level for the State of Iowa. This data set consists of geo-referenced digital data and associated attributes created in accordance with the "FGDC Proposal, Version 1.0 - Federal Standards For Delineation of Hydrologic Unit Boundaries 3/01/02"(http://www.ftw.nrcs.usda.gov/huc_data.html). Polygons are attributed with hydrologic unit codes for 4th level sub-basins, 5th level watersheds, 6th level subwatersheds, name, size, downstream hydrologic unit, type of watershed, non-contributing areas and flow modification. Arcs are attributed with the highest hydrologic unit code for each watershed, linesource and a metadata reference file.

  5. d

    Data from: Structural hillslope connectivity is driven by tectonics more...

    • dataone.org
    • beta.hydroshare.org
    • +2more
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Admin Husic; Alexander Michalek (2023). Structural hillslope connectivity is driven by tectonics more than climate and modulates hydrologic extremes and benefits [Dataset]. http://doi.org/10.4211/hs.e80005f70e974e729db02b25945ded8d
    Explore at:
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Hydroshare
    Authors
    Admin Husic; Alexander Michalek
    Area covered
    Description

    This data product is related to a journal article that has been accepted for publication in Geophysical Research Letters (July, 2022).

    This resources includes the Python scripts to calculate Index of Connectivity maps and MATLAB scripts for generating the plots used in the manuscript. This resource also includes the following Word/PDF files: (1) the text file of the manuscript, (2) the figures file, and (3) the supplemental information file. These files describe the process the authors undertook to create a structural connectivity map of the contiguous United States (CONUS). The exact methods are described in the text file. To download connectivity raster maps, visit the following link: https://apps.cuahsi.org/connectivity-map.

    The plain language summary for the manuscript is shown below:

    Hillslopes are critical landscape features that intercept, store, and route water, from its source as rainfall to its fate as river discharge. The strength of this routing is a function of climatic and tectonic forces, but their relative importance to hillslope connectivity is uncertain. We simulated the Index of Connectivity, a topographic analogue for structural connectivity, for 75 billion locations in CONUS, across a range of climatic and tectonic settings. At the CONUS-scale, we found that hillslope connectivity is largely driven by tectonic forces, including uplift and seismic activity, and that highly connected hillslopes are more susceptible to landslides while poorly connected hillslopes promote wetland development. We provide a web data portal to serve as a tool for stakeholders to visualize and leverage structural connectivity data in their respective study areas.

  6. WBDHU4

    • gis-fws.opendata.arcgis.com
    Updated Feb 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2024). WBDHU4 [Dataset]. https://gis-fws.opendata.arcgis.com/maps/fws::wbdhu4-1
    Explore at:
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    Each drainage area is considered a Hydrologic Unit (HU) and is given a Hydrologic Unit Code (HUC) which serves as the unique identifier for the area. Hydrologic Units are delineated to nest in a multi-level, hierarchical drainage system with corresponding HUCs, so that as you move from small scale to large scale the HUC digits increase in increments of two. For example, the very largest HUCs have 2 digits, and thus are referred to as HUC 2s, and the very smallest HUCs have 12 digits, and thus are referred to as HUC 12s.


    WBD HUCshttps://downloads.esri.com/blogs/hydro/AGOL_Content/WBD.jpg" style="max-width:100%; height:auto;" />

    HUC 2s, 6s, 8s, 10s, & 12s, define the drainage Regions, Subregions, Basins, Subbasins, Watersheds and Subwatersheds, respectively, across the United States. Their boundaries are defined by hydrologic and topographic criteria that delineate an area of land upstream from a specific point on a river and are determined solely upon science based hydrologic principles, not favoring any administrative boundaries, special projects, or a particular program or agency. The Watershed Boundary Dataset is delineated and georeferenced to the USGS 1:24,000 scale topographic basemap.

    Dataset Summary

    Phenomenon Mapped: Watersheds in the United States, as delineated by the Watershed Boundary Dataset (WBD).
    Coordinate System: NAD83
    Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands and American Samoa.
    Visible Scale: Visible at all scales, however USGS recommends this dataset should not be used for scales of 1:24,000 or larger.
    Source: United States Geological Survey
    Publication Date: July 27, 2023

  7. g

    Data and Results for GIS-based Identification of Areas that have Resource...

    • gimi9.com
    • data.usgs.gov
    • +2more
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Data and Results for GIS-based Identification of Areas that have Resource Potential for Sediment-hosted Pb-Zn Deposits in Alaska [Dataset]. https://www.gimi9.com/dataset/data-gov_data-and-results-for-gis-based-identification-of-areas-thathave-resource-potential-for-sed/
    Explore at:
    Dataset updated
    Dec 4, 2024
    Description

    This data release contains the analytical results and the evaluated source data files of a geospatial analysis for identifying areas in Alaska that may have potential for sediment-hosted Pb-Zn (lead-zinc) deposits. The spatial analysis is based on queries of statewide source datasets Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. The results in geodatabase format are in SedPbZn_Results_gdb.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points scored for each source data layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for sediment-hosted Pb-Zn deposits for each HUC. The data is described by FGDC metadata. An mxd file, layer file, and cartographic feature classes are provided for display of the results in ArcMap. Files sedPbZn_scoring_tables.pdf (list of the scoring parameters for the analysis) and sedPbZn_Results_gdb_README.txt (description of the files in this download package) are included. 2. The results in shapefile format are in SedPbZn_Results_shape.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points scored for each source data layer query, the accumulative score, and designation for high, medium, or low potential and high, medium, or low certainty for sediment-hosted Pb-Zn deposits for each HUC. The results are also provided as a CSV file. The data is described by FGDC metadata. Files sedPbZn_scoring_tables.pdf (list of the scoring parameters for the analysis) and sedPbZn_Results_shape_README.txt (description of the files in this download package) are included. 3. The source data in geodatabase format are in SedPbZn_SourceData_gdb.zip. Data layers include AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds, with FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are two python scripts 1) to score the ARDF records based on the presence of certain keywords, and 2) to evaluate the ARDF, AGDB3, and lithology layers for the potential for sediment-hosted Pb-Zn deposits within subwatershed polygons. Users may modify the scripts to design their own analyses. Files sedPbZn_scoring_table.pdf (list of the scoring parameters for the analysis) and sedPbZn_sourcedata_gdb_README.txt (description of the files in this download package) are included. 4. The source data in shapefile and CSV format are in SedPbZn_SourceData_shape.zip. Data layers include ARDF and lithology from SIM3340, and HUC subwatersheds, with FGDC metadata. The ARDF keyword tables available in the geodatabase package are presented here as CSV files. All data files are described with the FGDC metadata. Files sedPb_Zn_scoring_table.pdf (list of the scoring parameters for the analysis) and sedPbZn_sourcedata_shapefile_README.txt (description of the files in this download package) are included. 5. Appendices 2, 3 and 4, which are cited by the larger work OFR2020-1147. Files are presented in XLSX and CSV formats.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Danielle Tijerina (2021). HUC8 - CONUS Shapefile [Dataset]. https://dataone.org/datasets/sha256%3A4200cfccdc2c3729d0b3d4e7f634f5608875a698ef63d25bac7c8637fa4171e9

HUC8 - CONUS Shapefile

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 5, 2021
Dataset provided by
Hydroshare
Authors
Danielle Tijerina
Area covered
Description

This resource contains a shapefile of HUC-8 (eight digit Hydrologic Unit Codes) for the Continental United States (CONUS).

The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" “Standard” (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.

Search
Clear search
Close search
Google apps
Main menu