11 datasets found
  1. a

    Connecticut 3D Lidar Viewer

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • +1more
    Updated Jan 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4
    Explore at:
    Dataset updated
    Jan 8, 2020
    Dataset authored and provided by
    UConn Center for Land use Education and Research
    Description

    Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

  2. a

    Visualizing Lidar Data in ArcGIS Pro

    • edu.hub.arcgis.com
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2024). Visualizing Lidar Data in ArcGIS Pro [Dataset]. https://edu.hub.arcgis.com/documents/8c3ee111726044099ab53b7d0b20b2ef
    Explore at:
    Dataset updated
    Oct 22, 2024
    Dataset authored and provided by
    Education and Research
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.Lidar data have become an important source for detailed 3D information for cities as well as forestry, agriculture, archaeology, and many other applications. Topographic lidar surveys, which are conducted by airplane, helicopter or drone, produce data sets that contain millions or billions of points. This can create challenges for storing, visualizing and analyzing the data. In this tutorial you will learn how to create a LAS Dataset and explore the tools available in ArcGIS Pro for visualizing lidar data.To download the tutorial and data folder, click the Open button to the top right. This will download a ZIP file containing the tutorial documents and data files.Software & Solutions Used: ArcGIS Pro Advanced 3.x. Last tested with ArcGIS Pro version 3.3. Time to Complete: 30 - 60 minsFile Size: 337 MBDate Created: August 2020Last Updated: March 2024

  3. G

    2015 aerial LiDAR

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +2more
    csv, html, las, pdf +1
    Updated May 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). 2015 aerial LiDAR [Dataset]. https://open.canada.ca/data/en/dataset/9ae61fa2-c852-464b-af7f-82b169b970d7
    Explore at:
    html, las, csv, pdf, shpAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Nov 24, 2015 - Dec 8, 2015
    Description

    3D topographic representation of the territory in the form of a point cloud. LiDAR (Light Detection and Ranging) technology makes it possible to represent the Earth's surface topographically in three dimensions using a laser system mounted on board an aircraft. The very large number of 3D points recorded (up to 400,000 per second) makes it possible to obtain a multitude of details at the level of the ground and surface elements. LiDAR technology quickly, easily, and above all accurately provides the altitude of ground details and elements above ground, even in the presence of dense vegetation. The uses are: creation of a digital terrain model (DTM), creation of level curves, creation of level curves, volume calculation, planning, calculation of tree heights, mapping of building roofs, 3D modeling of cities, etc. Source: XEOS imagery inc.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  4. d

    Whole of State LiDAR Index Landgate (LGATE-351) - Datasets - data.wa.gov.au

    • catalogue.data.wa.gov.au
    Updated Jun 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Whole of State LiDAR Index Landgate (LGATE-351) - Datasets - data.wa.gov.au [Dataset]. https://catalogue.data.wa.gov.au/dataset/lidar
    Explore at:
    Dataset updated
    Jun 15, 2022
    Area covered
    Western Australia
    Description

    This dataset is an index of the availability and extent of Landgate's LiDAR repository only. LiDAR data or derivative datasets cannot be accessed or downloaded from this site and is currently only available upon completion of the Location Information Transactional Form (see ACCESS & USE INFORMATION below). LiDAR (Light Detection And Ranging) is an increasingly popular remote sensing technology that uses light in the form of a pulsed laser (typically from an aircraft) to measure 'ranges', thereby being able to accurately calculate distances and elevations in a 3D environment. As the State's custodian of elevation data, Landgate makes its Capture WA funded LiDAR acquisitions available for use by state & local governments and industry. Our repository comprises of acquisitions since 2017, captured over specific areas of the state and at various resolutions - expressed as PPM (Points Per [square] Metre) Additional information is available on the Landgate website. © Western Australian Land Information Authority (Landgate). Use of Landgate data is subject to Personal Use License terms and conditions unless otherwise authorised under approved License terms and conditions.

  5. 2019 - 2020 USGS Lidar: 8 Northwest Counties, IL

    • fisheries.noaa.gov
    las/laz - laser
    Updated Feb 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2021). 2019 - 2020 USGS Lidar: 8 Northwest Counties, IL [Dataset]. https://www.fisheries.noaa.gov/inport/item/70314
    Explore at:
    las/laz - laserAvailable download formats
    Dataset updated
    Feb 16, 2021
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Nov 23, 2019 - Dec 7, 2019
    Area covered
    Illinois, Jo Daviess Country, Carroll County, Henry County, Rock Island County, VERTICAL LOCATION > LAND SURFACE, Lee County, United States, Illinois, Illinois, Illinois
    Description

    Product: These lidar data are processed Classified LAS 1.4 files, formatted to individual 1000 meter x 1000 meter tiles; used to create intensity images, 3D breaklines and hydro-flattened DEMs as necessary.

    Dataset Description: This lidar project called for the planning, acquisition, processing and derivative products of lidar data to be collected at a nominal pulse spacing of 0.5 meter. P...

  6. U

    USGS 1 arc-second Digital Elevation Model

    • portal.opentopography.org
    • dataone.org
    • +3more
    raster
    Updated Jun 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2021). USGS 1 arc-second Digital Elevation Model [Dataset]. http://doi.org/10.5069/G9HX19WN
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    OpenTopography
    Time period covered
    Jan 1, 1923 - Dec 31, 2017
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Dataset funded by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain.

    This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here.

    Click here for a broad overview of this dataset

  7. C

    National Hydrography Data - NHD and 3DHP

    • data.cnra.ca.gov
    • data.ca.gov
    • +2more
    Updated Jul 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). National Hydrography Data - NHD and 3DHP [Dataset]. https://data.cnra.ca.gov/dataset/national-hydrography-dataset-nhd
    Explore at:
    zip(39288832), pdf, pdf(1436424), zip(578260992), zip(13901824), zip(128966494), zip(10029073), arcgis geoservices rest api, pdf(1175775), zip(972664), website, zip(1647291), pdf(437025), zip(15824984), zip(73817620), pdf(3684753), csv(12977), pdf(9867020), web videos, pdf(4856863), zip(4657694), pdf(1634485), pdf(182651), pdf(3932070)Available download formats
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    California Department of Water Resources
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.

    DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.

    For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.

    In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.

    The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).

    Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.

  8. U

    USGS 1/3 arc-second Digital Elevation Model

    • portal.opentopography.org
    • search.dataone.org
    • +3more
    raster
    Updated Jun 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2021). USGS 1/3 arc-second Digital Elevation Model [Dataset]. http://doi.org/10.5069/G98K778D
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Jun 18, 2021
    Dataset provided by
    OpenTopography
    Time period covered
    Jan 1, 1923 - Dec 31, 2017
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Dataset funded by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This collection of the 3D Elevation Program (3DEP) is at 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The vertical reference will vary in other areas. The seamless 1/3 arc-second DEM layer provides coverage of the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and in limited areas of Alaska. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. All 3DEP products are public domain.

    Click here for more details on this dataset

  9. P

    Preliminary Digital Elevation Models for Eaton Fire, CA 2025

    • portal.opentopography.org
    raster
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2025). Preliminary Digital Elevation Models for Eaton Fire, CA 2025 [Dataset]. http://doi.org/10.5069/G9JH3JD6
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    OpenTopography
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 21, 2025 - Jan 22, 2025
    Area covered
    Variables measured
    Area, Unit, RasterResolution
    Dataset funded by
    University of California San Diego
    NV5
    Description

    Following the devastating Los Angeles, California wildfires in January 2025, AlertCalifornia sponsored NV5 to acquire high-resolution airborne lidar data for the Palisades and Eaton impact areas. Through its partnership with University of California San Diego (UCSD), NV5 donated the interim data via the USGS to make them publicly available for use by the emergency response community and others.

    This dataset contains preliminary digital elevation model data for response and recovery as part of the Eaton wildfire in California. Lidar was collected and used to create a 0.5 meter raster DTM and DSM. DEMs have not been manually reviewed and should be considered preliminary. The response and recovery for the Eaton wildfire in California called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.25 meters. This data is provisional and was created for the immediate disaster response for the Eaton wildfire. NV5 Inc, UCSD, and USGS make no guarantee or warrantee as to the data's completeness and accuracy, and as a result, anyone using this data is doing so at their sole risk. Lidar was collected in winter 2025, while no snow was on the ground and rivers were at or below normal levels.

    For more information on this dataset see the NV5 press release

  10. A

    ALOS World 3D - 30m Ellipsoidal

    • portal.opentopography.org
    • dataone.org
    • +1more
    raster
    Updated Aug 23, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2017). ALOS World 3D - 30m Ellipsoidal [Dataset]. http://doi.org/10.5069/G94M92HB
    Explore at:
    rasterAvailable download formats
    Dataset updated
    Aug 23, 2017
    Dataset provided by
    OpenTopography
    Time period covered
    Jan 1, 2006 - Jan 1, 2011
    Area covered
    World,
    Variables measured
    Area, Unit, RasterResolution
    Description

    Note: This version of the ALOS World 3D dataset is provided in a WGS84 ellipsoidal vertical datum. This is a non-standard version of the AW3D30 dataset that is often used for InSAR analysis. This dataset was converted from the orthometric version using the EGM96 geoid model available here. For additional conversion details feel free to contact us.



    The ALOS Global Digital Surface Model (AW3D30) is a global dataset generated from images collected using the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) aboard the Advanced Land Observing Satellite (ALOS) from 2006 to 2011. As described by the Japan Aerospace Exploration Agency: The Japan Aerospace Exploration Agency (JAXA) releases the global digital surface model (DSM) dataset with a horizontal resolution of approx. 30-meter mesh (1 arcsec) free of charge. The dataset has been compiled with images acquired by the Advanced Land Observing Satellite "DAICHI" (ALOS). The dataset is published based on the DSM dataset (5-meter mesh version) of the "World 3D Topographic Data", which is the most precise global-scale elevation data at this time, and its elevation precision is also at a world-leading level as a 30-meter mesh version. This dataset is expected to be useful for scientific research, education, as well as the private service sector that uses geospatial information.

    Version: As of May 24th 2021 OpenTopography is supplying V3.2 (Jan 2021) from:
    ftp://ftp.eorc.jaxa.jp//pub/ALOS/ext1/AW3D30/release_v2012_single_format/
    Data downloaded prior to May 24th 2021 was in format: May 2016: Global terrestrial region (within approx. 82 deg. of N/S latitudes) of Version 1 released (approx. 22,100 tiles)

    Note: JAXA provides two versions of AW3D30 created from the original 5-meter mesh using different downsampling methods: average (provided here) and median (not available from OpenTopography).

  11. a

    Contours 2017 1ft

    • hub.arcgis.com
    Updated Jun 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cook County Government (2021). Contours 2017 1ft [Dataset]. https://hub.arcgis.com/documents/9b57cb59ea414eb2b01040d033365dfb
    Explore at:
    Dataset updated
    Jun 22, 2021
    Dataset authored and provided by
    Cook County Government
    Description

    2017 Cook County 1 ft. elevation contours in a Zipped File Geodatabase. (Clicking on link will download .zip file.) The Cook County, Illinois one foot contours were derived from a 2017 LiDAR acquisition. Details about creating the one foot contours:The contours were processed by the Cook County GIS Department in order to add contour classifications as Index Contours (every 5 feet), Intermediate Contours (every 1 foot), Index Depression Contours, and Intermediate Depression Contours. To create the classification Cook County GIS used the Identify Contour tool in ArcPro. The input was the contour feature and the 2017 DEM that was delivered along with the LiDAR data. Details about the LiDAR Acquisition:IL 4 County QL1 Lidar project called for the Planning, Acquisition, processing and derivative products of lidar data to be collected at a derived nominal pulse spacing (NPS) of 1 point every 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011), State Plane, U.S Survey Feet and vertical datum of NAVD88 (GEOID12B), U.S. Survey Feet. Lidar data was delivered as processed Classified LAS 1.4 files, formatted to 15,414 individual 2500 ft x 2500 ft tiles, as tiled Reflectance Imagery, and as tiled bare earth DEMs; all tiled to the same 2500 ft x 2500 ft schema.Ground Conditions: Lidar was collected April-May 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Ayers established a total of 66 ground control points that were used to calibrate the lidar to known ground locations established throughout the WI Kenosha-Racine Counties and IL 4 County QL1 project area. An additional 195 independent accuracy checkpoints, 116 in Bare Earth and Urban landcovers (116 NVA points), 79 in Tall Grass and Brushland/Low Trees categories (79 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the dataDetails about the DEM:To acquire detailed surface elevation data for use in conservation planning, design, research, floodplain mapping, dam safety assessments and elevation modeling, etc. Classified LAS files are used to show the manually reviewed bare earth surface. This allows the user to create Reflectance Images, Breaklines and Raster DEM. The purpose of these lidar data was to produce high accuracy 3D hydro-flattened Digital Elevation Model (DEM) with a 2 foot cell size. These raw lidar point cloud data were used to create classified lidar LAS files, Reflectance Images, 3D breaklines, 1 foot contours, and hydro-flattened DEMs as necessary.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
UConn Center for Land use Education and Research (2020). Connecticut 3D Lidar Viewer [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/788d121c4a1f4980b529f914c8df19f4

Connecticut 3D Lidar Viewer

Explore at:
Dataset updated
Jan 8, 2020
Dataset authored and provided by
UConn Center for Land use Education and Research
Description

Statewide 2016 Lidar points colorized with 2018 NAIP imagery as a scene created by Esri using ArcGIS Pro for the entire State of Connecticut. This service provides the colorized Lidar point in interactive 3D for visualization, interaction of the ability to make measurements without downloading.Lidar is referenced at https://cteco.uconn.edu/data/lidar/ and can be downloaded at https://cteco.uconn.edu/data/download/flight2016/. Metadata: https://cteco.uconn.edu/data/flight2016/info.htm#metadata. The Connecticut 2016 Lidar was captured between March 11, 2016 and April 16, 2016. Is covers 5,240 sq miles and is divided into 23, 381 tiles. It was acquired by the Captiol Region Council of Governments with funding from multiple state agencies. It was flown and processed by Sanborn. The delivery included classified point clouds and 1 meter QL2 DEMs. The 2016 Lidar is published on the Connecticut Environmental Conditions Online (CT ECO) website. CT ECO is the collaborative work of the Connecticut Department of Energy and Environmental Protection (DEEP) and the University of Connecticut Center for Land Use Education and Research (CLEAR) to share environmental and natural resource information with the general public. CT ECO's mission is to encourage, support, and promote informed land use and development decisions in Connecticut by providing local, state and federal agencies, and the public with convenient access to the most up-to-date and complete natural resource information available statewide.Process used:Extract Building Footprints from Lidar1. Prepare Lidar - Download 2016 Lidar from CT ECO- Create LAS Dataset2. Extract Building Footprints from LidarUse the LAS Dataset in the Classify Las Building Tool in ArcGIS Pro 2.4.Colorize LidarColorizing the Lidar points means that each point in the point cloud is given a color based on the imagery color value at that exact location.1. Prepare Imagery- Acquire 2018 NAIP tif tiles from UConn (originally from USDA NRCS).- Create mosaic dataset of the NAIP imagery.2. Prepare and Analyze Lidar Points- Change the coordinate system of each of the lidar tiles to the Projected Coordinate System CT NAD 83 (2011) Feet (EPSG 6434). This is because the downloaded tiles come in to ArcGIS as a Custom Projection which cannot be published as a Point Cloud Scene Layer Package.- Convert Lidar to zlas format and rearrange. - Create LAS Datasets of the lidar tiles.- Colorize Lidar using the Colorize LAS tool in ArcGIS Pro. - Create a new LAS dataset with a division of Eastern half and Western half due to size limitation of 500GB per scene layer package. - Create scene layer packages (.slpk) using Create Cloud Point Scene Layer Package. - Load package to ArcGIS Online using Share Package. - Publish on ArcGIS.com and delete the scene layer package to save storage cost.Additional layers added:Visit https://cteco.uconn.edu/projects/lidar3D/layers.htm for a complete list and links. 3D Buildings and Trees extracted by Esri from the lidarShaded Relief from CTECOImpervious Surface 2012 from CT ECONAIP Imagery 2018 from CTECOContours (2016) from CTECOLidar 2016 Download Link derived from https://www.cteco.uconn.edu/data/download/flight2016/index.htm

Search
Clear search
Close search
Google apps
Main menu