Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains satellite imagery of 4,454 power plants within the United States. The imagery is provided at two resolutions: 1m (4-band NAIP iamgery with near-infrared) and 30m (Landsat 8, pansharpened to 15m). The NAIP imagery is available for the U.S. and Landsat 8 is available globally. This dataset may be of value for computer vision work, machine learning, as well as energy and environmental analyses.Additionally, annotations of the specific locations of the spatial extent of the power plants in each image is provided. These annotations were collected via the crowdsourcing platform, Amazon Mechanical Turk, using multiple annotators for each image to ensure quality. Links to the sources of the imagery data, the annotation tool, and the team that created the dataset are included in the "References" section.To read more on these data, please refer to the "Power Plant Satellite Imagery Dataset Overview.pdf" file. To download a sample of the data without downloading the entire dataset, download "sample.zip" which includes two sample powerplants and the NAIP, Landsat 8, and binary annotations for each.Note: the NAIP imagery may appear "washed out" when viewed in standard image viewing software because it includes a near-infrared band in addition to the standard RGB data.
The NSW SPOT6/7 imagery product is a state-wide satellite imagery product provided by Geoimage Pty Ltd for NSW Government. The images were captured September 2021 through to March 2022. The imagery scenes used to create the NSW mosaic includes Lord Howe Island. This imagery data set has been acquired through GeoImages Pty Ltd and Airbus Defence and Space. \r \r SPOT imagery products offer high resolution over broad areas using the SPOT 6/7 satellites. A SPOT satellite acquisition covers large areas in a single pass at resolutions up to 1.5m. Such precise coverage is ideal for applications at national and regional scales from 1:250,000 to 1:15,000. SPOT 6/7 also includes the benefits of the near-infrared (NIR) which enables applications for detection of features not visible to the human eye, such as detecting and monitoring vegetation health.\r \r Data products supplied for all of NSW are:\r \r 1. State-wide mosaic \r \r 2. 100k Mapsheet tiles (GDA94 and GDA2020)\r \r 3. Multi spectral scenes (GDA94 and GDA2020)\r \r 4. Pan sharpened scenes (GDA94 and GDA2020)\r \r 5. Panchromatic scenes (GDA94 and GDA2020)\r \r 6. Shapefile cutlines of statewide mosaic \r \r \r The statewide mosaic is provided as a Red Green Blue (RGB) band combination; contrast enhanced lossless 8-bit JPEG2000 file (456gb in size). Individual 100k mapsheet mosaics contain BGR+NIR band combination; unenhanced 16-bit GeoTIFF format tile.\r \r The NSW mosaic is available from internal DPE APOLLO Image Webserver for DCCEEW employees.\r \r The 4band 100k mapsheet tiles are available for download from JDAP.\r The rectified multispectral, pan sharpened and panchromatic scenes are available for download from JDAP (pending)\r \r Acknowledgement when referencing: includes material © CNES_ (year of production), Distribution Airbus Services/SPOT Image, S.A, France, all rights reserved\r \r Contact spatial.imagery@environment.nsw.gov.au for further information or to request access to JDAP \r \r These image products are only available to other NSW Government agencies upon request.\r
The WorldView-3 Level 1B Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-3 satellite using the WorldView-110 camera across the global land surface from August 2014 to the present. This satellite imagery is in a range of wavebands with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. The imagery has a spatial resolution of 1.24m at nadir and a temporal resolution of less than one day. The data are provided in National Imagery Transmission Format (NITF). This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.
Date of Images:Post-Event: NonePre-Event: 7/20/2023, 7/22/2023Date of Next Image:UnknownSummary:The Color Infrared composite is created using the near-infrared, red, and green channels, allowing for the ability to see areas impacted from the fires. The near-infrared gives the ability to see through thin clouds. Healthy vegetation is shown as red, water is in blue.Suggested Use:A Color Infrared composite depicts healthy vegetation as red, water as blue. Some minor atmospheric corrections have occurred.Satellite/Sensor:MultiSpectral Instrument (MSI) on European Space Agency's (ESA) Copernicus Sentinel-2A/2B satellitesResolution:10 metersCredits:NASA/MSFC, USGS, ESA CopernicusEsri REST Endpoint:See URL section on the right side of page.WMS Endpoint:https://maps.disasters.nasa.gov/ags04/services/hurricane_idalia_2023/sentinel2_colorinfrared/MapServer/WMSServerData Download:https://maps.disasters.nasa.gov/download/gis_products/event_specific/2023/hurricane_idalia/sentinel2/
The NSW SPOT6/7 imagery product is a state-wide satellite imagery product provided by Geoimage Pty Ltd for NSW Government. The images were captured September 2021 through to March 2022. The imagery scenes used to create the NSW mosaic includes Lord Howe Island. This imagery data set has been acquired through GeoImages Pty Ltd and Airbus Defence and Space.
SPOT imagery products offer high resolution over broad areas using the SPOT 6/7 satellites. A SPOT satellite acquisition covers large areas in a single pass at resolutions up to 1.5m. Such precise coverage is ideal for applications at national and regional scales from 1:250,000 to 1:15,000. SPOT 6/7 also includes the benefits of the near-infrared (NIR) which enables applications for detection of features not visible to the human eye, such as detecting and monitoring vegetation health.
Data products supplied for all of NSW are:
State-wide mosaic
100k Mapsheet tiles (GDA94 and GDA2020)
Multi spectral scenes (GDA94 and GDA2020)
Pan sharpened scenes (GDA94 and GDA2020)
Panchromatic scenes (GDA94 and GDA2020)
Shapefile cutlines of statewide mosaic
The statewide mosaic is provided as a Red Green Blue (RGB) band combination; contrast enhanced lossless 8-bit JPEG2000 file (456gb in size). Individual 100k mapsheet mosaics contain BGR+NIR band combination; unenhanced 16-bit GeoTIFF format tile.
The NSW mosaic is available from internal DPE APOLLO Image Webserver for DCCEEW employees.
The 4band 100k mapsheet tiles are available for download from JDAP. The rectified multispectral, pan sharpened and panchromatic scenes are available for download from JDAP (pending)
Acknowledgement when referencing: includes material © CNES_ (year of production), Distribution Airbus Services/SPOT Image, S.A, France, all rights reserved
Contact spatial.imagery@environment.nsw.gov.au for further information or to request access to JDAP
These image products are only available to other NSW Government agencies upon request.
This Normalized Difference Vegetation Index (NDVI) layer features recent high-resolution (1-meter or better) aerial imagery for the continental United States, made available by the USDA Farm Production and Conservation Business Center (FPAC). The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental United States. Approximately half of the US is collected each year and each state is typically collected every other year.This imagery layer is updated annually as new imagery is made available. The NAIP program aims to make the imagery available to governmental agencies and to the public within a year of collection. The imagery is published in 4-bands (Red, Green, Blue, and Near Infrared) where available. Additional NAIP renderings include Natural Color and Color Infrared. Key PropertiesGeographic Coverage: Continental United States (Hawaii and Puerto Rico available for some years)Temporal Coverage: 2010 to 2023Spatial Resolution: 0.3-meter to 1-meterRevisit Time: Typically every other yearSource Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Analysis: Optimized for analysisMultispectral Bands:BandDescriptionSpatial Resolution (m)1Red0.3 - 12Green0.3 - 13Blue0.3 - 14Near Infrared0.3 - 1 Usage Tips and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and calculations for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer is NDVI ((Red - Near Infrared) / (Red + Near Infrared)).If natural color visualization is your primary use case for NAIP, you might consider using the NAIP Imagery tile layer for optimal display performance.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent imagery available for a given area is prioritized and dynamically fused into a single mosaicked image layer. To discover and isolate specific images for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Using the "None" processing template option as input to analysis provides all bands with raw pixel values and is recommended for many use cases. Otherwise, only processing templates that include a "for analysis" designation should be used as input to analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific year, year range, state, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer. Data SourceNAIP imagery is credited to the United States Department of Agriculture (USDA) Farm Production and Conservation Business Center (FPAC). All imagery in this layer was is sourced from the NAIP Registry of Open Data on AWS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The TNO Image Fusion Dataset contains nultispectral (intensified visual, near-infrared, and longwave infrared or thermal) nighttime imagery of different military relevant scenerios, registered with different multiband camnera systems. The different camera systems used to register this imagery are respectively Athena, DHV, FEL, and TRICLOBS. Imagery recorded with these systems are stored in folders labeled with the corresponding camera system name. Information on the registration conditions and the respective camera systems is included in the REFRENCES sections in each of the folders. The images can freely be used for research purposes, and may be used in publications without prior notice, provided proper credit is given to the owner (TNO, Soesterberg, The Netherlands) and this figshare dataset is properly referenced.
The Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) data contains calibrated at-sensor radiance, which corresponds with the ASTER Level 1B (AST_L1B), that has been geometrically corrected and rotated to a north-up UTM projection. The AST_L1T is created from a single resampling of the corresponding ASTER L1A (AST_L1A) product. The bands available in the AST_L1T depend on the bands in the AST_L1A and can include up to three Visible and Near Infrared (VNIR) bands, six Shortwave Infrared (SWIR) bands, and five Thermal Infrared (TIR) bands. The AST_L1T dataset does not include the aft-looking VNIR band 3. The AST_L1T product has a spatial resolution of 15 meters (m) for the VNIR bands, 30 m for the SWIR bands, and 90 m for the TIR bands.
The precision terrain correction process incorporates GLS2000 digital elevation data with derived ground control points (GCPs) to achieve topographic accuracy for all daytime scenes where correlation statistics reach a minimum threshold. Alternate levels of correction are possible (systematic terrain, systematic, or precision) for scenes acquired at night or that otherwise represent a reduced quality ground image (e.g., cloud cover).
For daytime images, if the VNIR or SWIR telescope collected data and precision correction was attempted, each precision terrain corrected image will have an accompanying independent quality assessment. It will include the geometric correction available for distribution in both as a text file and a single band browse images with the valid GCPs overlaid.
This multi-file product also includes georeferenced full resolution browse images. The number of browse images and the band combinations of the images depends on the bands available in the corresponding AST_L1A dataset.
AST_L1T V3 will continue forward processing using radiometric calibration coefficients (RCC) Version 4 and will remain available for direct download through the LP DAAC Data Pool and NASA's Earthdata Search. The new AST_L1T V3.1 data product will be processed with RCC V5 and can be ordered through NASA's Earthdata Search.
Known Issues * A modification has been incorporated within the processing of the AST_L1T data product for correcting zero-filled scans that appear in the processing of low-latitude, ascending orbit (night) thermal infrared (TIR) data acquisitions. This correction has been implemented for the historical archive of the ASTER L1T data product and for newly processed scenes as of October 1, 2017. Additional information can be found in the ASTER L1T User Advisory document for more details. * Users are advised that ASTER SWIR data acquired from April 2008 to the present exhibit anomalous saturation of values and anomalous striping. This effect is also present for some prior acquisition periods. Please refer to the ASTER SWIR User Advisory for more details. * Since April 1, 2008, when the anomalies in the SWIR data rendered it unusable, the SWIR band data has not been included in the AST_L1T product. * Data acquisition gaps: On November 28, 2024, one of Terra's power-transmitting shunt units failed. As a result, there was insufficient power to maintain functionality of the ASTER instrument. ASTER resumed acquisitions for the VNIR bands on January 18, 2025, and for the TIR bands on April 15, 2025. Users should note the data gap in ASTER acquisitions from November 28, 2024, through January 16, 2025, for VNIR observations, and a gap from November 28, 2024, through April 15, 2025, for TIR acquisitions.
The NSW SPOT6/7 imagery product is a state-wide satellite imagery product provided by Geoimage Pty Ltd for NSW Government. The images were captured September 2022 through to March 2023. The imagery scenes used to create the NSW mosaic includes Lord Howe Island. This imagery data set has been acquired through GeoImages Pty Ltd and Airbus Defence and Space.
SPOT imagery products offer high resolution over broad areas using the SPOT 6/7 satellites. A SPOT satellite acquisition covers large areas in a single pass at resolutions up to 1.5m. Such precise coverage is ideal for applications at national and regional scales from 1:250,000 to 1:15,000. SPOT 6/7 also includes the benefits of the near-infrared (NIR) which enables applications for detection of features not visible to the human eye, such as detecting and monitoring vegetation health.
Data products supplied for all of NSW are:
State-wide mosaic
100k Mapsheet tiles (GDA94 and GDA2020)
Multi spectral scenes (GDA94 and GDA2020)
Pan sharpened scenes (GDA94 and GDA2020)
Panchromatic scenes (GDA94 and GDA2020)
Shapefile cutlines of statewide mosaic
The statewide mosaic is provided as a Red Green Blue (RGB) band combination; contrast enhanced lossless 8-bit JPEG2000 file (456gb in size). Individual 100k mapsheet mosaics contain BGR+NIR band combination; unenhanced 16-bit GeoTIFF format tile.
The NSW mosaic is available from internal DPE APOLLO Image Webserver for DCCEEW employees.
The 4band 100k mapsheet tiles are available for download from JDAP(pending). The rectified multispectral, pan sharpened and panchromatic scenes are available for download from JDAP (pending)
Acknowledgement when referencing: includes material © CNES_ (year of production), Distribution Airbus Services/SPOT Image, S.A, France, all rights reserved
Contact spatial.imagery@environment.nsw.gov.au for further information or to request access to JDAP
These image products are only available to other NSW Government agencies upon request.
This image layer features recent high-resolution (1m) aerial imagery for the continental United States made available by the USDA Farm Services Agency. The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental United States. A primary goal of the NAIP program is to make digital ortho photography available to governmental agencies and the public within a year of acquisition. This image layer provides access to the most recent NAIP imagery for each state and will be updated annually as new imagery is made available. This imagery is published in 4-bands (RGB and Near Infrared), where available, with the option to display the imagery as false color to show the IR band or to display the NDVI (Normalized Difference Vegetation Index) showing relative biomass of an area.
The GOES-16 Advanced Baseline Imager (ABI) L2 Cloud and Moisture Imagery provides 16 spectral bands with high temporal resolution over the American continent. The significance of the GOES-16 satellite for Brazil and South America lies in its location at longitude -75°, allowing it to offer comprehensive coverage of the continent and the oceanic regions of the Pacific and Atlantic. The ABI captures 2 visible, 4 near-infrared, and 10 infrared channels at resolutions ranging from 500m to 2km. This collection encompasses images acquired by the GOES-16 satellite (GOES-East) in full-disk mode, depicting nearly full coverage of the Western Hemisphere in a circular image. Important: note that other modes, such as CONUS and MESOSCALE, are not included in this collection. Cloud and Moisture Imagery product (CMIP) files are generated for each of the 16 ABI reflective and emissive bands. The collection captures CMIP product files into individual STAC Items for each observation from the GOES-16 satellite. It includes the original and full-resolution CMIP NetCDF files generated by INPE's GOES-R receive station. There is also a version for band 02, which originally has a resolution of 500m, degraded to 1km. For more information, refer to the Beginner’s Guide to GOES-R Series Data (https://www.goesr.gov/downloads/resources/documents/Beginners_Guide_to_GOES-R_Series_Data.pdf), GOES-R Series Product Definition and Users Guide: Volume 5 (Level 2A+ Products) (https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf) and the ABI Bands Quick Information Guides (https://www.goes-r.gov/mission/ABI-bands-quick-info.html).
Date of Images:Post-Event: NonePre-Event: 8/19/2023, 8/20/2023, 8/21/2023, 8/22/2023, 8/23/2023Date of Next Image:UnknownSummary:The Color Infrared composite is created using the near-infrared, red, and green channels, allowing for the ability to see areas impacted from the fires. The near-infrared gives the ability to see through thin clouds. Healthy vegetation is shown as red, water is in blue.Suggested Use:A Color Infrared composite depicts healthy vegetation as red, water as blue. Some minor atmospheric corrections have occurred.Satellite/Sensor:Landsat 8 Operational Land Imager (OLI)Landsat 9 Operational Land Imager-2 (OLI-2)Resolution:30mCredits:NASA/MSFC, USGSEsri REST Endpoint:See URL section on the right side of page.WMS Endpoint:https://maps.disasters.nasa.gov/ags04/services/hurricane_idalia_2023/landsat_colorinfrared/MapServer/WMSServerData Download:https://maps.disasters.nasa.gov/download/gis_products/event_specific/2023/hurricane_idalia/landsat/
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ahttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1a
The PlanetScope Level 1B Basic Scene and Level 3B Ortho Scene full archive products are available as part of Planet imagery offer. The Unrectified Asset: PlanetScope Basic Analytic Radiance (TOAR) product is a Scaled Top of Atmosphere Radiance (at sensor) and sensor corrected product, without correction for any geometric distortions inherent in the imaging processes and is not mapped to a cartographic projection. The imagery data is accompanied by Rational Polynomial Coefficients (RPCs) to enable orthorectification by the user. This kind of product is designed for users with advanced image processing and geometric correction capabilities. Basic Scene Product Components and Format Product Components Image File (GeoTIFF format) Metadata File (XML format) Rational Polynomial Coefficients (XML format) Thumbnail File (GeoTIFF format) Unusable Data Mask UDM File (GeoTIFF format) Usable Data Mask UDM2 File (GeoTIFF format) Bands 4-band multispectral image (blue, green, red, near-infrared) or 8-band (coastal-blue, blue, green I, green, yellow, red, Rededge, near-infrared) Ground Sampling Distance Approximate, satellite altitude dependent Dove-C: 3.0 m-4.1 m Dove-R: 3.0 m-4.1 m SuperDove: 3.7 m-4.2 m Accuracy <10 m RMSE The Rectified assets: The PlanetScope Ortho Scene product is radiometrically-, sensor- and geometrically- corrected and is projected to a UTM/WGS84 cartographic map projection. The geometric correction uses fine Digital Elevation Models (DEMs) with a post spacing of between 30 and 90 metres. Ortho Scene Product Components and Format Product Components Image File (GeoTIFF format) Metadata File (XML format) Thumbnail File (GeoTIFF format) Unusable Data Mask UDM File (GeoTIFF format) Usable Data Mask UDM2 File (GeoTIFF format) Bands 3-band natural colour (red, green, blue) or 4-band multispectral image (blue, green, red, near-infrared) or 8-band (coastal-blue, blue, green I, green, yellow, red, RedEdge, near-infrared) Ground Sampling Distance Approximate, satellite altitude dependent Dove-C: 3.0 m-4.1 m Dove-R: 3.0 m-4.1 m SuperDove: 3.7 m-4.2 m Projection UTM WGS84 Accuracy <10 m RMSE PlanetScope Ortho Scene product is available in the following: PlanetScope Visual Ortho Scene product is orthorectified and colour-corrected (using a colour curve) 3-band RGB Imagery. This correction attempts to optimise colours as seen by the human eye providing images as they would look if viewed from the perspective of the satellite. PlanetScope Surface Reflectance product is orthorectified, 4-band BGRN or 8-band Coastal Blue, Blue, Green I, Green, Yellow, Red, RedEdge, NIR Imagery with geometric, radiometric and corrected for surface reflection. This data is optimal for value-added image processing such as land cover classifications. PlanetScope Analytic Ortho Scene Surface Reflectance product is orthorectified, 4-band BGRN or 8-band Coastal Blue, Blue, Green I, Green, Yellow, Red, RedEdge, NIR Imagery with geometric, radiometric and calibrated to top of atmosphere radiance. As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.
This image service is available through CT ECO, a partnership between UConn CLEAR and CT DEEP. It is a virtual mosaic of 23,341 GeoTIFF tiles. It is related to the tiled service of the same dataset.
This image service is available through CTECO, a partnership between UConn CLEAR and CT DEEP. It is a virtual mosaic of 23,341 GeoTIFF tiles. This service is tiled for faster drawing speed. It is related to the dynamic service of the same dataset.
This image service is available through CTECO, a partnership between UConn CLEAR and CT DEEP. It is a virtual mosaic of 23,341 GeoTIFF tiles. It is related to the tiled service of the same dataset.
The Earth-Observing One (EO-1) satellite was decommissioned March 2017. The EO-1 satellite was launched on November 21, 2000 with the NASA's New Millennium Program (NMP). The NMP was an advanced-technology development program created a new generation of technologies and mission concepts into future Earth and space science missions. Information of the EO-1 mission can be found on the EOPortal. All EO-1 ALI and Hyperion historical data will continue to be available through EarthExplorer for the foreseeable future. EO-1 Product Description
The Earth Observing-1 (EO-1) satellite was launched November 21, 2000 as a one-year technology demonstration/validation mission. After the initial technology mission was completed, NASA and the USGS agreed to the continuation of the EO-1 program as an Extended Mission. The EO-1 Extended Mission is chartered to collect and distribute Hyperion hyperspectral and Advanced Land Imager (ALI) multispectral products according to customer tasking requests. Hyperion Instrument on board the EO-1 spacecraft
Hyperion collects 220 unique spectral channels ranging from 0.357 to 2.576 micrometers with a 10-nm bandwidth. The instrument operates in a pushbroom fashion, with a spatial resolution of 30 meters for all bands. The standard scene width is 7.7 kilometers. Standard scene length is 42 kilometers, with an optional increased scene length of 185 kilometers (additional information).
All Hyperion and Advanced Land Imager (ALI) data in the archive will be attempted to be processed to the Level 1Gst level of correction. If the scene fails the Level 1Gst processing level, it will be removed from the archive and will become unavailable. As of June 15th, 2009, not all of the EO-1 data has been processed; please continue to check back if the scene of your interest is not available. We will be making attempts to process the failed scene as time and workload permits; however there are no guarantees that all of the EO-1 scenes will be able to be processed.
https://nconemap.gov/pages/termshttps://nconemap.gov/pages/terms
Since 2020, the NC Orthoimagery Program has collected 4-band imagery (red, green, blue, near infrared) to support image analysis. The 2023 imagery collection includes the 21 counties representing the Southern Piedmont and Mountain regions of North Carolina. This version of the data is presented as true color (red, green, blue) imagery and is best used for general or background viewing. The imagery was flown in early 2023 as part of the NC Orthoimagery Program and has a pixel resolution of 6 inches. The RMSE is 1.0 ft X and Y.
NOTE: DO NOT DOWNLOAD THE IMAGERY BY USING THE MAP OR DOWNLOAD TOOLS ON THIS ARCGIS HUB ITEM PAGE. IT WILL RESULT IN A PIXELATED ORTHOIMAGE. INSTEAD, DOWNLOAD THE IMAGERY BY TILE OR BY COUNTY MOSAIC (2010 - current year).To view the latest imagery for any location in the state, customers should use the "Orthoimagery_Latest" image service which can be found at https://nconemap.gov.To view the latest imagery that is suitable for raster analysis, customers should use the "Orthoimagery_Latest_Analysis" image service which can be found at https://nconemap.gov.To find specific dates the images were captured use the imagery dates app or download the data.
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
The imagery has a pixel resolution of 6 inches with a RMSE of 1.0 ft X and Y. Processing has been minimized to preserve the ability to use this data for raster analysis.The normalized difference vegetation index (NDVI) is useful for measuring the quality, density, and amount of vegetation in a particular area. It is a single band dataset that represents vegetation health, based on the difference between the red and near infrared bands. Red and orange pixels represent areas with no vegetation. Yellow pixels represent areas with low to moderate vegetation. Green pixels represent areas with high vegetation density and health. This data is provided as a web service only (no download).To view the latest imagery for any location in the state, customers should always use the "Orthoimagery_Latest" image service which can be found at https://nconemap.gov.To find specific dates the images were captured use the imagery dates app or download the data.
USDA USFS Southwestern Region Contract # AG-8371-C-10-0011 Delivery # AG-8371-D-13-0056 DIGITAL PHOTOGRAPHY ACQUISITION, JAROSO FIRE, NEW MEXICO Project Coordinate System: UTM Zone 13, NAD83, NAVD88, Meters Acquisition Date: 9/29/2013 Abstract: Wilson & Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Jaroso Fire that burned in the Santa Fe National Forest in the Sangre De Cristo Mountains of central New Mexico in the summer of 2013. The fire was started by lightning on Monday June 10th, 2013 at approximately 01:45 PM and burned 11,149 acres located 8 miles South of Truchas, New Mexico. Aerial imagery was collected with a frame - based Z/I Digital Mapping Camera at an average of elevation of 2800 meters above average ground; generating an average ground sample distance (gsd) of 0.3 meters. The imagery will support the Forest Service Burned Area Emergency Response (BAER) program that addresses landscape damage due to the fire, with the goal of protecting life, property, water quality, and deteriorated ecosystems from further damage. While many wildfires cause little damage to the land and pose few threats to fish, wildlife and people downstream, the fires of 2013 have in this case created situations that require special efforts to prevent further problems after the fire. Loss of vegetation exposes soil to erosion, runoff may increase and cause flooding, sediments may move downstream and damage houses or fill reservoirs and put endangered species and community water supplies at risk. The imagery will support the Forest Service Burned Area Emergency Response (BAER) program that addresses these situations with the goal of protecting life, property, water quality, and deteriorated ecosystems from further damage after the fire is out. In addition, other federal, tribal, state, and local governments will be participating in similar program along with Universities in the region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains satellite imagery of 4,454 power plants within the United States. The imagery is provided at two resolutions: 1m (4-band NAIP iamgery with near-infrared) and 30m (Landsat 8, pansharpened to 15m). The NAIP imagery is available for the U.S. and Landsat 8 is available globally. This dataset may be of value for computer vision work, machine learning, as well as energy and environmental analyses.Additionally, annotations of the specific locations of the spatial extent of the power plants in each image is provided. These annotations were collected via the crowdsourcing platform, Amazon Mechanical Turk, using multiple annotators for each image to ensure quality. Links to the sources of the imagery data, the annotation tool, and the team that created the dataset are included in the "References" section.To read more on these data, please refer to the "Power Plant Satellite Imagery Dataset Overview.pdf" file. To download a sample of the data without downloading the entire dataset, download "sample.zip" which includes two sample powerplants and the NAIP, Landsat 8, and binary annotations for each.Note: the NAIP imagery may appear "washed out" when viewed in standard image viewing software because it includes a near-infrared band in addition to the standard RGB data.