53 datasets found
  1. a

    QGIS - Open Source GIS Software

    • home-ecgis.hub.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://home-ecgis.hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  2. QGIS Map

    • figshare.com
    zip
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matilda Smollny (2023). QGIS Map [Dataset]. http://doi.org/10.6084/m9.figshare.24565153.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 15, 2023
    Dataset provided by
    figshare
    Authors
    Matilda Smollny
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The QGIS map available for download contains all layers visualized in the thesis.

  3. QGIS

    • samoa-data.sprep.org
    • pacificdata.org
    • +14more
    pdf, zip
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). QGIS [Dataset]. https://samoa-data.sprep.org/dataset/qgis
    Explore at:
    pdf, pdf(179911), pdf(25618331), zipAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    QGIS is a Free and Open Source Geographic Information System. This dataset contains all the information to get you started.

  4. R

    Dataset Qgis Dataset

    • universe.roboflow.com
    zip
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    for test (2025). Dataset Qgis Dataset [Dataset]. https://universe.roboflow.com/for-test-z9rh0/dataset-qgis
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    for test
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Rice Field Polygons
    Description

    Dataset Qgis

    ## Overview
    
    Dataset Qgis is a dataset for instance segmentation tasks - it contains Rice Field annotations for 401 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  5. GISF2E: ArcGIS, QGIS, and python tools and Tutorial

    • figshare.com
    pdf
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). GISF2E: ArcGIS, QGIS, and python tools and Tutorial [Dataset]. http://doi.org/10.6084/m9.figshare.2065320.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    figshare
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

  6. g

    Sample Geodata and Software for Demonstrating Geospatial Preprocessing for...

    • gimi9.com
    • envidat.ch
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Sample Geodata and Software for Demonstrating Geospatial Preprocessing for Forest Accessibility and Wood Harvesting at FOSS4G2019 [Dataset]. https://gimi9.com/dataset/eu_d28614a0-0825-4040-bc1b-e0455b1e4df6-envidat
    Explore at:
    Dataset updated
    Jun 12, 2019
    Description

    This dataset contains open vector data for railways, forests and power lines, as well an open digital elevation model (DEM) for a small area around a sample forest range in Europe (Germany, Upper Bavaria, Kochel Forest Range, some 70 km south of München, at the edge of Bavarian Alps). The purpose of this dataset is to provide a documented sample dataset in order to demonstrate geospatial preprocessing at FOSS4G2019 based on open data and software. This sample has been produced based on several existing open data sources (detailed below), therefore documenting the sources for obtaining some data needed for computations related to forest accessibility and wood harvesting. For example, they can be used with the open methodology and QGIS plugin Seilaplan for optimising the geometric layout cable roads or with additional open software for computing the forest accessibility for wood harvesting. The vector data (railways, forests and power lines) was extracted from OpenStreetMap (data copyrighted OpenStreetMap contributors and available from https://www.openstreetmap.org). The railways and forests were downloaded and extracted on 18.05.2019 using the open sources QGIS (https://www.qgis.org) with the QuickOSM plugin, while the power lines were downloaded a couple of days later on 23.05.2019. Additional notes for vector data: Please note that OpenStreeMap data extracts such as forests, roads and railways (except power lines) can also be downloaded in a GIS friendly format (Shapefile) from http://download.geofabrik.de/ or using the QGIS built-in download function for OpenStreetMap data. The most efficient way to retrieve specific OSM tags (such as power=line) is to use the QuickOSM plugin for QGIS (using the Overpass API - https://wiki.openstreetmap.org/wiki/Overpass_API) or directly using overpass turbo (https://overpass-turbo.eu/). Finally, the digitised perimeter of the sample forest range is also made available for reproducibility purposes, although any perimeter or area can be digitised freely using the QGIS editing toolbar. The DEM was originally adapted and modified also with QGIS (https://www.qgis.org) based on the elevation data available from two different sources, by reprojecting and downsampling datasets to 25m then selecting, for each individual raster cell, the elevation value that was closer to the average. These two different elevation sources are: - Copernicus Land Monitoring Service - EU-DEM v.1.1 (TILE ID E40N20, downloaded from https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1; this original DEM was produced by the Copernicus Land Monitoring Service “with funding by the European Union” based on SRTM and ASTER GDEM) - Digitales Geländemodell 50 m Gitterweite (https://opendata.bayern.de/detailansicht/datensatz/digitales-gelaendemodell-50-m-gitterweite/), produced by the Bayerische Vermessungsverwaltung – www.geodaten.bayern.de –and downloaded from http://www.geodaten.bayern.de/opendata/DGM50/dgm50_epsg4258.tif This methodology was chosen as a way of performing a basic quality check, by comparing the EU-DEM v.1.1 derived from globally available DEM data (such as SRTM) with more authoritative data for the randomly selected region, since using authoritative data is preferred (if open and available). For other sample regions, where authoritative open data is not available, such comparisons cannot longer be performed. Additional notes DEM: a very good DEM open data source for Germany is the open data set collected and resampled by Sonny (sonnyy7@gmail.com) and made available on the Austrian Open Data Portal http://data.opendataportal.at/dataset/dtm-germany. In order to simplify end-to-end reproducibility of the paper planned for FOSS4G2019, we use and distribute an adapted (reprojected and resampled to 25 meters) sample of the above mentioned dataset for the selected forest range. This sample dataset is accompanied by software in Python, as a Jupiter Notebook that generates harmonized output rasters with the same extent from the input data. The extent is given by the polygon vector dataset (Perimeter). These output rasters, such as obstacles, aspect, slope, forest cover, can serve as input data for later computations related to forest accessibility and wood harvesting questions. The obstacles output is obtained by transforming line vector datasets (railway lines, high voltage power lines) to raster. Aspect and slope are both derived from the sample digital elevation model.

  7. e

    World - High Resolution Solar Resource (GHI, DIF, GTI, DNI) GIS Data,...

    • energydata.info
    Updated Nov 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). World - High Resolution Solar Resource (GHI, DIF, GTI, DNI) GIS Data, (Global Solar Atlas) - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-high-resolution-solar-resource-ghi-dif-gti-dni-gis-data-global-solar-atlas
    Explore at:
    Dataset updated
    Nov 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains solar resource data for: direct normal irradiation (DNI), global horizontal irradiation (GHI), diffuse horizontal irradiation data (DIF), and global irradiation for optimally tilted surfaces (GTI), all in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m). Due to the large amount of data, the coverage has been divided into eight segments. Four segments for the North hemisphere: WWN (West-west-north), WN (West-north), EN (East-north), EEN (East-east-north). Analogically four segments for the South hemisphere: WWS, WS, ES, EES. The data is hyperlinked under 'resources' with the following characteristics: DNI LTAy_AvgDailyTotals (GeoTIFF) Data format: raster (gridded), GEOTIFF File size : 343.99 MB For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

  8. e

    ASSEMBLY OF FRANCE METROPOLITAN OPEN STREET MAP: GEOPACKAGE AND SQL FORMAT

    • data.europa.eu
    plain text, zip
    Updated Aug 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DELETED DELETED (2023). ASSEMBLY OF FRANCE METROPOLITAN OPEN STREET MAP: GEOPACKAGE AND SQL FORMAT [Dataset]. https://data.europa.eu/data/datasets/60c46d63ec3bdcb9d526c776?locale=en
    Explore at:
    zip(1197185836), zip, zip(300551415), plain text(433)Available download formats
    Dataset updated
    Aug 22, 2023
    Dataset authored and provided by
    DELETED DELETED
    Area covered
    Metropolitan France, France
    Description

    Here you will find an assembly of the open street map in metropolitan france. The geopackage version also contains data from neighbouring countries (border regions except espagne). The the.qgz project allows the geopackage data to be opened with the busy style and hacking depending on the zoom level. video presenting this data gpkg and QGIS: https://www.youtube.com/watch?v=R6O9cMqVVvM&t=6s The version.sql is characterised by an additional attribute for each geometric entity: The INSEE code This data will be updated on a monthly basis.

    INSTRUCTIONS FOR DECLARING GPKG DATA: Download all files and rename as follows:

    OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_001.zip — > OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214.zip.001 OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_002.zip — > OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214.zip.002 OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_003.zip — > OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214.zip.003 OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_004.zip — > OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214.zip.004

    or if you know the batch back to create a.bat file containing this (or you rename the renowned file. txt as rename.bat):

    pushd “% ~ DP0” REN OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_001.zip OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214.zip.001 REN OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_002.zip OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214.zip.002 REN OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_003.zip OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214.zip.003 REN OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_004.zip OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214.zip.004

    and launch.bat by double clicking on it (the batch must be in the same place as the zip files)

    Then right-click on the OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_001.zip file and have it extracted to “OSM_QGZ_GPKG_ET_FRONTALIER_PRDG_FXX_ED214_001\” with your pressure relief software. There is no need to click on 002, 003, 004. Opening file.001 opens all other parts of the archive

    For version.sql, the procedure is the same: rename OSM_SQL_FXX_PRDG_D000_ED214_001.zip to OSM_SQL_FXX_PRDG_D000_ED214.zip.001 OSM_SQL_FXX_PRDG_D000_ED214_002.zip to OSM_SQL_FXX_PRDG_D000_ED214.zip.002 OSM_SQL_FXX_PRDG_D000_ED214_003.zip to OSM_SQL_FXX_PRDG_D000_ED214.zip.003 Then carry out pressure relief

  9. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    • devweb.dga.links.com.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric, Dr; Lawrey, Eric, Dr (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric, Dr; Lawrey, Eric, Dr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.

    Method: The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (not yet published) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.

    Single merged composite GeoTiff: The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.

    Change Log: 2023-03-02: Eric Lawrey Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

    22 Nov 2023: Eric Lawrey Added the data and maps for close up of Mer. - 01-data/TS_DNRM_Mer-aerial-imagery/ - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    Source datasets: Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302 Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose. CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland This is the high resolution imagery used to create the map of Mer.

    Marine satellite imagery (Sentinel 2 and Landsat 8) (AIMS), https://eatlas.org.au/data/uuid/5d67aa4d-a983-45d0-8cc1-187596fa9c0c - World_AIMS_Marine-satellite-imagery

    Data Location: This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.

  10. f

    Export Excel fieldbook to csv-file

    • figshare.com
    mp4
    Updated Jul 6, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wouter Marra (2016). Export Excel fieldbook to csv-file [Dataset]. http://doi.org/10.6084/m9.figshare.3472199.v1
    Explore at:
    mp4Available download formats
    Dataset updated
    Jul 6, 2016
    Dataset provided by
    figshare
    Authors
    Wouter Marra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Screencast on how to export field observations with gps coordinates in Excel to a .csv file.

  11. Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California (NPS, GRD, GRI, YOSE, YOSE digital map) adapted from U.S. Geological Survey Geologic Quadrangle Maps by Bateman, Kistler, Huber, Dodge, Krauskopf, Peck and others (1965, 1966, 1968, 1971, 1980, 1985, 1987, 1989 and 2002), Miscellaneous Field Studies Maps by Huber (1983), and Bateman and Krauskopf (1987) and a Geologic Investigations Series Map by Wahrhaftig (2000), and a California Geological Survey Map Sheet map by Chesterman (1975 [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-yosemite-national-park-and-vicinity-california-nps-grd-gri-yos
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California
    Description

    The Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yose_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yose_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yose_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yose_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yose_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yose_geology_metadata_faq.pdf). Please read the yose_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yose_geology_metadata.txt or yose_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington (NPS, GRD, GRI, OLYM, OLYM digital map) adapted from Washington Division of Geology and Earth Resources Open File Report maps by Gerstel, Logan, Schasse and Lingley and other Washington Division of Geology and Earth Resources Staff (2000, 2003 and 2005) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-olympic-national-park-and-vicinity-washington-nps-grd-gri-olym
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Earth
    Description

    The Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (olym_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (olym_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (olym_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (olym_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (olym_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (olym_geology_metadata_faq.pdf). Please read the olym_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Washington Division of Geology and Earth Resources. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (olym_geology_metadata.txt or olym_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  13. a

    fault

    • maps-cadoc.opendata.arcgis.com
    Updated Jun 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rio Hondo College (2021). fault [Dataset]. https://maps-cadoc.opendata.arcgis.com/maps/riohondo::fault
    Explore at:
    Dataset updated
    Jun 17, 2021
    Dataset authored and provided by
    Rio Hondo College
    Area covered
    Description

    You will need to download this zipped file and extract to a folder. Again, the file must be extracted to a folder you can find. For me, I like to have a folder simply named GIS and I dump all the files I use in the GIS in this folder.

  14. g

    Ghana Shapefile

    • geopostcodes.com
    shp
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2025). Ghana Shapefile [Dataset]. https://www.geopostcodes.com/country/ghana-shapefile
    Explore at:
    shpAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    Ghana
    Description

    Download high-quality, up-to-date Ghana shapefile boundaries (SHP, projection system SRID 4326). Our Ghana Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.

  15. d

    Parks - Facilities & Features - Shapefiles

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated Dec 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). Parks - Facilities & Features - Shapefiles [Dataset]. https://catalog.data.gov/dataset/parks-facilities-features-shapefiles
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    data.cityofchicago.org
    Description

    Facilities and features in Chicago parks. For more information, visit http://www.chicagoparkdistrict.com/facilities/search/. To view or use these shapefiles, compression software and special GIS software, such as ESRI ArcGIS or QGIS, is required. To download this file, right-click the "Download" link above and choose "Save link as."

  16. Digital Geologic-GIS Map of the Yellowstone National Park and Vicinity,...

    • catalog.data.gov
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Yellowstone National Park and Vicinity, Wyoming, Montana and Idaho (NPS, GRD, GRI, YELL, YELL digital map) adapted from U.S. Geological Survey maps by Christiansen, Blank, Prostka, Smedes, Pierce, the U.S. Geological Survey, Elliot, Nelson, Wahl, Witkind, Love and others (1956 to 2007), and a Montana Bureau of Mines and Geology map by Berg, Lonn and Locke (1999) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-yellowstone-national-park-and-vicinity-wyoming-montana-and
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Montana, Wyoming
    Description

    The Digital Geologic-GIS Map of the Yellowstone National Park and Vicinity, Wyoming, Montana and Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yell_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yell_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yell_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yell_geology_metadata_faq.pdf). Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and Montana Bureau of Mines and Geology. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yell_geology_metadata.txt or yell_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. a

    Assignment 003/004 for QGIS Users (California County Layers)

    • maps-cadoc.opendata.arcgis.com
    Updated Jun 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rio Hondo College (2021). Assignment 003/004 for QGIS Users (California County Layers) [Dataset]. https://maps-cadoc.opendata.arcgis.com/maps/a8137bc5e2f845b496608b8a413caca4
    Explore at:
    Dataset updated
    Jun 17, 2021
    Dataset authored and provided by
    Rio Hondo College
    Area covered
    Description

    You will need to download this zipped file and extract to a folder. Again, the file must be extracted to a folder you can find. For me, I like to have a folder simply named GIS and I dump all the files I use in the GIS in this folder.

  18. e

    Average local taxes by assets — Departmental Map 54 Meurthe and Moselle 2015...

    • data.europa.eu
    excel xls, jpeg, pdf +1
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philippe Ch, Average local taxes by assets — Departmental Map 54 Meurthe and Moselle 2015 [Dataset]. https://data.europa.eu/data/datasets/56ef07c6c751df0c9ad6e93b
    Explore at:
    jpeg(1251950), excel xls(2660864), zip(79478), pdf(3588797)Available download formats
    Dataset authored and provided by
    Philippe Ch
    License

    Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
    License information was derived automatically

    Description

    Here is an image of the global municipal tax (founcier bati + habitation). Average tax per asset Nancy 2014

    To do it again you will need: — QGIS software (Free: https://www.qgis.org/fr/site/forusers/download.html), — a qgs file of your department (http://www.actualitix.com/shapefiles-des-departements-de-france.html) — an export of tax rates (https://www.data.gouv.fr/fr/datasets/impots-locaux/ > Municipal and intercommunal data > Your Department > Local Direct Tax Data 2014 (XLS format)) — data (most days of INSEE here 2012 http://www.insee.fr/fr/themes/detail.asp?reg_id=99&ref_id=base-cc-emploi-pop-active-2012)

    Operating Mode: — process your data in your favorite spreadsheet (Excel or OpenOffice Calc) by integrating impot data, and INSEE to pull out the numbers that seem revealing to you — Install QGIS — Open the.qgs of your department

    Add columns — Right click property on the main layer — Go to the field menu (on the left) — Add (via pencil) the desired columns (here average housing tax per asset, average property tax per asset, and the sum of both) — These are reals of precision 2, and length 6 — Register

    Insert data: — Right-click on the “Open attribute table” layer — Select all — Copy — Paste in excel (or openOffice calcs) — Put the ad hoc formulas in excel (SOMME.SI.ENS to recover the rate) — Save the desired tab in CSV DOS with the new values — In QGIS > Menu > Layer > Add a delimited layer of text — Import the CSV

    Present the data: — To simplify I advise you to make a layer by rate, and layers sums. So rots you in three clicks out the image of the desired rate — For each layer (or rate) — Right click properties on the csv layer — Labels to add city name and desired rate — Style for fct coloring of a csv field

    Print the data in pdf: — To print, you need to define a print template — In the menu choose new printing dialer — choose the format (a department in A0 is rather readable) — Add vas legend, scale, and other — Print and here...

    NB: this method creates aberrations: — in the case where the INSEE does not have a number or numbers that have moved a lot since — it is assumed that only assets pay taxes (which is more fair, but not 100 %)

  19. e

    World - Direct Normal Irradiation (DNI) GIS Data, (Global Solar Atlas) -...

    • energydata.info
    Updated Nov 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). World - Direct Normal Irradiation (DNI) GIS Data, (Global Solar Atlas) - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/world-direct-normal-irradiation-dni-gis-data-global-solar-atlas
    Explore at:
    Dataset updated
    Nov 28, 2023
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Developed by SOLARGIS and provided by the Global Solar Atlas (GSA), this data resource contains direct normal irradiation (DNI) in kWh/m² covering the globe. Data is provided in a geographic spatial reference (EPSG:4326). The resolution (pixel size) of solar resource data (GHI, DIF, GTI, DNI) is 9 arcsec (nominally 250 m), PVOUT and TEMP 30 arcsec (nominally 1 km) and OPTA 2 arcmin (nominally 4 km). The data is hyperlinked under 'resources' with the following characteristics: DNI LTAy_AvgDailyTotals (GeoTIFF) Data format: GEOTIFF File size : 343.99 MB There are two temporal representation of solar resource and PVOUT data available: • Longterm yearly/monthly average of daily totals (LTAym_AvgDailyTotals) • Longterm average of yearly/monthly totals (LTAym_YearlyMonthlyTotals) Both type of data are equivalent, you can select the summarization of your preference. The relation between datasets is described by simple equations: • LTAy_YearlyTotals = LTAy_DailyTotals * 365.25 • LTAy_MonthlyTotals = LTAy_DailyTotals * Number_of_Days_In_The_Month For individual country or regional data downloads please see: https://globalsolaratlas.info/download (use the drop-down menu to select country or region of interest) For data provided in AAIGrid please see: https://globalsolaratlas.info/download/world. For more information and terms of use, please, read metadata, provided in PDF and XML format for each data layer in a download file. For other data formats, resolution or time aggregation, please, visit Solargis website. Data can be used for visualization, further processing, and geo-analysis in all mainstream GIS software with raster data processing capabilities (such as open source QGIS, commercial ESRI ArcGIS products and others).

  20. Digital Geologic-GIS Map of Gettysburg National Military Park, Pennsylvania...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Gettysburg National Military Park, Pennsylvania (NPS, GRD, GRI, EISE, GETT, GETT digital map) adapted from U.S. Geological Survey Geologic Atlas of the United States Folio maps by Stose and Bascom (1929) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-gettysburg-national-military-park-pennsylvania-nps-grd-gri-eis
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    United States, Gettysburg, Pennsylvania
    Description

    The Digital Geologic-GIS Map of Gettysburg National Military Park, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (gett_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (gett_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (gett_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (gett_eise_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (gett_eise_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gett_geology_metadata_faq.pdf). Please read the gett_eise_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gett_geology_metadata.txt or gett_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://home-ecgis.hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82

QGIS - Open Source GIS Software

Explore at:
30 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2018
Dataset authored and provided by
Eaton County Michigan
Description

This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

Search
Clear search
Close search
Google apps
Main menu