100+ datasets found
  1. GitTables 1M - CSV files

    • zenodo.org
    zip
    Updated Jun 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Madelon Hulsebos; Çağatay Demiralp; Paul Groth; Madelon Hulsebos; Çağatay Demiralp; Paul Groth (2022). GitTables 1M - CSV files [Dataset]. http://doi.org/10.5281/zenodo.6515973
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 6, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Madelon Hulsebos; Çağatay Demiralp; Paul Groth; Madelon Hulsebos; Çağatay Demiralp; Paul Groth
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains >800K CSV files behind the GitTables 1M corpus.

    For more information about the GitTables corpus, visit:

    - our website for GitTables, or

    - the main GitTables download page on Zenodo.

  2. CSV file used in statistical analyses

    • data.csiro.au
    • researchdata.edu.au
    • +1more
    Updated Oct 13, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSIRO (2014). CSV file used in statistical analyses [Dataset]. http://doi.org/10.4225/08/543B4B4CA92E6
    Explore at:
    Dataset updated
    Oct 13, 2014
    Dataset authored and provided by
    CSIROhttp://www.csiro.au/
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Mar 14, 2008 - Jun 9, 2009
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.

  3. Sample Graph Datasets in CSV Format

    • zenodo.org
    csv
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edwin Carreño; Edwin Carreño (2024). Sample Graph Datasets in CSV Format [Dataset]. http://doi.org/10.5281/zenodo.14335015
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Edwin Carreño; Edwin Carreño
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sample Graph Datasets in CSV Format

    Note: none of the data sets published here contain actual data, they are for testing purposes only.

    Description

    This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:

    • dataset_30_nodes_interactions.csv:contains 30 rows (nodes).
    • dataset_30_edges_interactions.csv: contains 47 rows (edges).
    • the common identifier dataset_30 refers to the same graph.

    CSV nodes

    Each dataset contains the following columns:

    Name of the ColumnTypeDescription
    UniProt IDstringprotein identification
    labelstringprotein label (type of node)
    propertiesstringa dictionary containing properties related to the protein.

    CSV edges

    Each dataset contains the following columns:

    Name of the ColumnTypeDescription
    Relationship IDstringrelationship identification
    Source IDstringidentification of the source protein in the relationship
    Target IDstringidentification of the target protein in the relationship
    labelstringrelationship label (type of relationship)
    propertiesstringa dictionary containing properties related to the relationship.

    Metadata

    GraphNumber of NodesNumber of EdgesSparse graph

    dataset_30*

    30

    47

    Y

    dataset_60*

    60

    181

    Y

    dataset_120*

    120

    689

    Y

    dataset_240*

    240

    2819

    Y

    dataset_300*

    300

    4658

    Y

    dataset_600*

    600

    18004

    Y

    dataset_1200*

    1200

    71785

    Y

    dataset_2400*

    2400

    288600

    Y

    dataset_3000*

    3000

    449727

    Y

    dataset_6000*

    6000

    1799413

    Y

    dataset_12000*

    12000

    7199863

    Y

    dataset_24000*

    24000

    28792361

    Y

    dataset_30000*

    30000

    44991744

    Y

    This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.

    CSV nodes (tiny graphs)

    Each dataset contains the following columns:

    Name of the ColumnTypeDescription
    IDstringnode identification
    labelstringnode label (type of node)
    propertiesstringa dictionary containing properties related to the node.

    CSV edges (tiny graphs)

    Each dataset contains the following columns:

    Name of the ColumnTypeDescription
    IDstringrelationship identification
    sourcestringidentification of the source node in the relationship
    targetstringidentification of the target node in the relationship
    labelstringrelationship label (type of relationship)
    propertiesstringa dictionary containing properties related to the relationship.

    Metadata (tiny graphs)

    GraphNumber of NodesNumber of EdgesSparse graph
    dataset_dummy*36N
    dataset_dummy2*36N
  4. B

    Residential School Locations Dataset (CSV Format)

    • borealisdata.ca
    • search.dataone.org
    Updated Jun 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosa Orlandini (2019). Residential School Locations Dataset (CSV Format) [Dataset]. http://doi.org/10.5683/SP2/RIYEMU
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 5, 2019
    Dataset provided by
    Borealis
    Authors
    Rosa Orlandini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1863 - Jun 30, 1998
    Area covered
    Canada
    Description

    The Residential School Locations Dataset [IRS_Locations.csv] contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites.

  5. f

    1000 Empirical Time series

    • figshare.com
    • researchdata.edu.au
    png
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ben Fulcher (2023). 1000 Empirical Time series [Dataset]. http://doi.org/10.6084/m9.figshare.5436136.v10
    Explore at:
    pngAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Ben Fulcher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A diverse selection of 1000 empirical time series, along with results of an hctsa feature extraction, using v1.06 of hctsa and Matlab 2019b, computed on a server at The University of Sydney.The results of the computation are in the hctsa file, HCTSA_Empirical1000.mat for use in Matlab using v1.06 of hctsa.The same data is also provided in .csv format for the hctsa_datamatrix.csv (results of feature computation), with information about rows (time series) in hctsa_timeseries-info.csv, information about columns (features) in hctsa_features.csv (and corresponding hctsa code used to compute each feature in hctsa_masterfeatures.csv), and the data of individual time series (each line a time series, for time series described in hctsa_timeseries-info.csv) is in hctsa_timeseries-data.csv. These .csv files were produced by running >>OutputToCSV(HCTSA_Empirical1000.mat,true,true); in hctsa.The input file, INP_Empirical1000.mat, is for use with hctsa, and contains the time-series data and metadata for the 1000 time series. For example, massive feature extraction from these data on the user's machine, using hctsa, can proceed as>> TS_Init('INP_Empirical1000.mat');Some visualizations of the dataset are in CarpetPlot.png (first 1000 samples of all time series as a carpet (color) plot) and 150TS-250samples.png (conventional time-series plots of the first 250 samples of a sample of 150 time series from the dataset). More visualizations can be performed by the user using TS_PlotTimeSeries from the hctsa package.See links in references for more comprehensive documentation for performing methodological comparison using this dataset, and on how to download and use v1.06 of hctsa.

  6. Geolocation Data [Longitude Latitude]

    • kaggle.com
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    You Sheng (2022). Geolocation Data [Longitude Latitude] [Dataset]. https://www.kaggle.com/datasets/liewyousheng/geolocation
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    You Sheng
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Context

    Full Database of city state country available in CSV format. All Countries, States & Cities are Covered & Populated with Different Combinations & Versions.

    Each CSV has the 1. Longitude 2. Latitude

    of each location, alongside other miscellaneous country data such as 3. Currency 4. State code 5. Phone country code

    Content

    Total Countries : 250 Total States/Regions/Municipalities : 4,963 Total Cities/Towns/Districts : 148,061

    Last Updated On : 29th January 2022

    Source

    https://github.com/dr5hn/countries-states-cities-database

  7. e

    ATOM Download Service for the RÚIAN data of feature hierarchy by the area of...

    • data.europa.eu
    wfs
    Updated Aug 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). ATOM Download Service for the RÚIAN data of feature hierarchy by the area of the country - CSV format [Dataset]. https://data.europa.eu/data/datasets/cz-00025712-cuzk_atom-md_ruian-csv-hie-st
    Explore at:
    wfsAvailable download formats
    Dataset updated
    Aug 29, 2020
    Description

    Download Service provides pre-defined data on relationship between selected territorial elements and units of territorial registration using the ATOM technology. The service is publicly available and free-of-charge (data covers the whole territory of the Czech Republic) and enables downloading of predefined data file containing data for the whole Czech Republic. Files are created during the first day of each month with data valid to the last day of previous month. The whole dataset (7 files) is compressed (ZIP) for downloading.

  8. US Real Estate

    • zenrows.com
    csv
    Updated Jun 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZenRows (2021). US Real Estate [Dataset]. https://www.zenrows.com/datasets/us-real-estate
    Explore at:
    csv(5,8MB)Available download formats
    Dataset updated
    Jun 27, 2021
    Dataset provided by
    ZenRows S.L.
    Authors
    ZenRows
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    High-quality, free real estate dataset from all around the United States, in CSV format. Over 10.000 records relevant to Real Estate investors, agents, and data scientists. We are working on complete datasets from a wide variety of countries. Don't hesitate to contact us for more information.

  9. d

    Dataset metadata of known Dataverse installations

    • search.dataone.org
    • dataverse.harvard.edu
    • +1more
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gautier, Julian (2023). Dataset metadata of known Dataverse installations [Dataset]. http://doi.org/10.7910/DVN/DCDKZQ
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Gautier, Julian
    Description

    This dataset contains the metadata of the datasets published in 77 Dataverse installations, information about each installation's metadata blocks, and the list of standard licenses that dataset depositors can apply to the datasets they publish in the 36 installations running more recent versions of the Dataverse software. The data is useful for reporting on the quality of dataset and file-level metadata within and across Dataverse installations. Curators and other researchers can use this dataset to explore how well Dataverse software and the repositories using the software help depositors describe data. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation on October 2 and October 3, 2022 using a Python script kept in a GitHub repo at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_dataset_metadata_of_all_installations.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL in which I was able to create an account and another named "apikey" listing my accounts' API tokens. The Python script expects and uses the API tokens in this CSV file to get metadata and other information from installations that require API tokens. How the files are organized ├── csv_files_with_metadata_from_most_known_dataverse_installations │ ├── author(citation).csv │ ├── basic.csv │ ├── contributor(citation).csv │ ├── ... │ └── topic_classification(citation).csv ├── dataverse_json_metadata_from_each_known_dataverse_installation │ ├── Abacus_2022.10.02_17.11.19.zip │ ├── dataset_pids_Abacus_2022.10.02_17.11.19.csv │ ├── Dataverse_JSON_metadata_2022.10.02_17.11.19 │ ├── hdl_11272.1_AB2_0AQZNT_v1.0.json │ ├── ... │ ├── metadatablocks_v5.6 │ ├── astrophysics_v5.6.json │ ├── biomedical_v5.6.json │ ├── citation_v5.6.json │ ├── ... │ ├── socialscience_v5.6.json │ ├── ACSS_Dataverse_2022.10.02_17.26.19.zip │ ├── ADA_Dataverse_2022.10.02_17.26.57.zip │ ├── Arca_Dados_2022.10.02_17.44.35.zip │ ├── ... │ └── World_Agroforestry_-_Research_Data_Repository_2022.10.02_22.59.36.zip └── dataset_pids_from_most_known_dataverse_installations.csv └── licenses_used_by_dataverse_installations.csv └── metadatablocks_from_most_known_dataverse_installations.csv This dataset contains two directories and three CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 18 CSV files that contain the values from common metadata fields of all 77 Dataverse installations. For example, author(citation)_2022.10.02-2022.10.03.csv contains the "Author" metadata for all published, non-deaccessioned, versions of all datasets in the 77 installations, where there's a row for each author name, affiliation, identifier type and identifier. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 77 zipped files, one for each of the 77 Dataverse installations whose dataset metadata I was able to download using Dataverse APIs. Each zip file contains a CSV file and two sub-directories: The CSV file contains the persistent IDs and URLs of each published dataset in the Dataverse installation as well as a column to indicate whether or not the Python script was able to download the Dataverse JSON metadata for each dataset. For Dataverse installations using Dataverse software versions whose Search APIs include each dataset's owning Dataverse collection name and alias, the CSV files also include which Dataverse collection (within the installation) that dataset was published in. One sub-directory contains a JSON file for each of the installation's published, non-deaccessioned dataset versions. The JSON files contain the metadata in the "Dataverse JSON" metadata schema. The other sub-directory contains information about the metadata models (the "metadata blocks" in JSON files) that the installation was using when the dataset metadata was downloaded. I saved them so that they can be used when extracting metadata from the Dataverse JSON files. The dataset_pids_from_most_known_dataverse_installations.csv file contains the dataset PIDs of all published datasets in the 77 Dataverse installations, with a column to indicate if the Python script was able to download the dataset's metadata. It's a union of all of the "dataset_pids_..." files in each of the 77 zip files. The licenses_used_by_dataverse_installations.csv file contains information about the licenses that a number of the installations let depositors choose when creating datasets. When I collected ... Visit https://dataone.org/datasets/sha256%3Ad27d528dae8cf01e3ea915f450426c38fd6320e8c11d3e901c43580f997a3146 for complete metadata about this dataset.

  10. Gene expression csv files

    • figshare.com
    txt
    Updated Jun 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cristina Alvira (2023). Gene expression csv files [Dataset]. http://doi.org/10.6084/m9.figshare.21861975.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Cristina Alvira
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Csv files containing all detectable genes.

  11. Dataset of the paper: "How do Hugging Face Models Document Datasets, Bias,...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jan 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federica Pepe; Vittoria Nardone; Vittoria Nardone; Antonio Mastropaolo; Antonio Mastropaolo; Gerardo Canfora; Gerardo Canfora; Gabriele BAVOTA; Gabriele BAVOTA; Massimiliano Di Penta; Massimiliano Di Penta; Federica Pepe (2024). Dataset of the paper: "How do Hugging Face Models Document Datasets, Bias, and Licenses? An Empirical Study" [Dataset]. http://doi.org/10.5281/zenodo.10058142
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Federica Pepe; Vittoria Nardone; Vittoria Nardone; Antonio Mastropaolo; Antonio Mastropaolo; Gerardo Canfora; Gerardo Canfora; Gabriele BAVOTA; Gabriele BAVOTA; Massimiliano Di Penta; Massimiliano Di Penta; Federica Pepe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This replication package contains datasets and scripts related to the paper: "*How do Hugging Face Models Document Datasets, Bias, and Licenses? An Empirical Study*"

    ## Root directory

    - `statistics.r`: R script used to compute the correlation between usage and downloads, and the RQ1/RQ2 inter-rater agreements

    - `modelsInfo.zip`: zip file containing all the downloaded model cards (in JSON format)

    - `script`: directory containing all the scripts used to collect and process data. For further details, see README file inside the script directory.

    ## Dataset

    - `Dataset/Dataset_HF-models-list.csv`: list of HF models analyzed

    - `Dataset/Dataset_github-prj-list.txt`: list of GitHub projects using the *transformers* library

    - `Dataset/Dataset_github-Prj_model-Used.csv`: contains usage pairs: project, model

    - `Dataset/Dataset_prj-num-models-reused.csv`: number of models used by each GitHub project

    - `Dataset/Dataset_model-download_num-prj_correlation.csv` contains, for each model used by GitHub projects: the name, the task, the number of reusing projects, and the number of downloads

    ## RQ1

    - `RQ1/RQ1_dataset-list.txt`: list of HF datasets

    - `RQ1/RQ1_datasetSample.csv`: sample set of models used for the manual analysis of datasets

    - `RQ1/RQ1_analyzeDatasetTags.py`: Python script to analyze model tags for the presence of datasets. it requires to unzip the `modelsInfo.zip` in a directory with the same name (`modelsInfo`) at the root of the replication package folder. Produces the output to stdout. To redirect in a file fo be analyzed by the `RQ2/countDataset.py` script

    - `RQ1/RQ1_countDataset.py`: given the output of `RQ2/analyzeDatasetTags.py` (passed as argument) produces, for each model, a list of Booleans indicating whether (i) the model only declares HF datasets, (ii) the model only declares external datasets, (iii) the model declares both, and (iv) the model is part of the sample for the manual analysis

    - `RQ1/RQ1_datasetTags.csv`: output of `RQ2/analyzeDatasetTags.py`

    - `RQ1/RQ1_dataset_usage_count.csv`: output of `RQ2/countDataset.py`

    ## RQ2

    - `RQ2/tableBias.pdf`: table detailing the number of occurrences of different types of bias by model Task

    - `RQ2/RQ2_bias_classification_sheet.csv`: results of the manual labeling

    - `RQ2/RQ2_isBiased.csv`: file to compute the inter-rater agreement of whether or not a model documents Bias

    - `RQ2/RQ2_biasAgrLabels.csv`: file to compute the inter-rater agreement related to bias categories

    - `RQ2/RQ2_final_bias_categories_with_levels.csv`: for each model in the sample, this file lists (i) the bias leaf category, (ii) the first-level category, and (iii) the intermediate category

    ## RQ3

    - `RQ3/RQ3_LicenseValidation.csv`: manual validation of a sample of licenses

    - `RQ3/RQ3_{NETWORK-RESTRICTIVE|RESTRICTIVE|WEAK-RESTRICTIVE|PERMISSIVE}-license-list.txt`: lists of licenses with different permissiveness

    - `RQ3/RQ3_prjs_license.csv`: for each project linked to models, among other fields it indicates the license tag and name

    - `RQ3/RQ3_models_license.csv`: for each model, indicates among other pieces of info, whether the model has a license, and if yes what kind of license

    - `RQ3/RQ3_model-prj-license_contingency_table.csv`: usage contingency table between projects' licenses (columns) and models' licenses (rows)

    - `RQ3/RQ3_models_prjs_licenses_with_type.csv`: pairs project-model, with their respective licenses and permissiveness level

    ## scripts

    Contains the scripts used to mine Hugging Face and GitHub. Details are in the enclosed README

  12. m

    KU-HAR: An Open Dataset for Human Activity Recognition

    • data.mendeley.com
    Updated Feb 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah-Al Nahid (2021). KU-HAR: An Open Dataset for Human Activity Recognition [Dataset]. http://doi.org/10.17632/45f952y38r.5
    Explore at:
    Dataset updated
    Feb 16, 2021
    Authors
    Abdullah-Al Nahid
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    (Always use the latest version of the dataset. )

    Human Activity Recognition (HAR) refers to the capacity of machines to perceive human actions. This dataset contains information on 18 different activities collected from 90 participants (75 male and 15 female) using smartphone sensors (Accelerometer and Gyroscope). It has 1945 raw activity samples collected directly from the participants, and 20750 subsamples extracted from them. The activities are:

    Stand➞ Standing still (1 min) Sit➞ Sitting still (1 min) Talk-sit➞ Talking with hand movements while sitting (1 min) Talk-stand➞ Talking with hand movements while standing or walking(1 min) Stand-sit➞ Repeatedly standing up and sitting down (5 times) Lay➞ Laying still (1 min) Lay-stand➞ Repeatedly standing up and laying down (5 times) Pick➞ Picking up an object from the floor (10 times) Jump➞ Jumping repeatedly (10 times) Push-up➞ Performing full push-ups (5 times) Sit-up➞ Performing sit-ups (5 times) Walk➞ Walking 20 meters (≈12 s) Walk-backward➞ Walking backward for 20 meters (≈20 s) Walk-circle➞ Walking along a circular path (≈ 20 s) Run➞ Running 20 meters (≈7 s) Stair-up➞ Ascending on a set of stairs (≈1 min) Stair-down➞ Descending from a set of stairs (≈50 s) Table-tennis➞ Playing table tennis (1 min)

    Contents of the attached .zip files are: 1.Raw_time_domian_data.zip➞ Originally collected 1945 time-domain samples in separate .csv files. The arrangement of information in each .csv file is: Column 1, 5➞ exact time (elapsed since the start) when the Accelerometer & Gyro output was recorded (in ms) Col. 2, 3, 4➞ Acceleration along X,Y,Z axes (in m/s^2) Col. 6, 7, 8➞ Rate of rotation around X,Y,Z axes (in rad/s)

    2.Trimmed_interpolated_raw_data.zip➞ Unnecessary parts of the samples were trimmed (only from the beginning and the end). The samples were interpolated to keep a constant sampling rate of 100 Hz. The arrangement of information is the same as above.

    3.Time_domain_subsamples.zip➞ 20750 subsamples extracted from the 1945 collected samples provided in a single .csv file. Each of them contains 3 seconds of non-overlapping data of the corresponding activity. Arrangement of information: Col. 1–300, 301–600, 601–900➞ Acc.meter X, Y, Z axes readings Col. 901–1200, 1201–1500, 1501–1800➞ Gyro X, Y, Z axes readings Col. 1801➞ Class ID (0 to 17, in the order mentioned above) Col. 1802➞ length of the each channel data in the subsample Col. 1803➞ serial no. of the subsample

    Gravity acceleration was omitted from the Acc.meter data, and no filter was applied to remove noise. The dataset is free to download, modify, and use.

    More information is provided in the data paper which is currently under review: N. Sikder, A.-A. Nahid, KU-HAR: An open dataset for heterogeneous human activity recognition, Pattern Recognit. Lett. (submitted).

    A preprint will be available soon.

    Backup: drive.google.com/drive/folders/1yrG8pwq3XMlyEGYMnM-8xnrd6js0oXA7

  13. d

    Replication Data for: Revisiting 'The Rise and Decline' in a Population of...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill (2023). Replication Data for: Revisiting 'The Rise and Decline' in a Population of Peer Production Projects [Dataset]. http://doi.org/10.7910/DVN/SG3LP1
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill
    Description

    This archive contains code and data for reproducing the analysis for “Replication Data for Revisiting ‘The Rise and Decline’ in a Population of Peer Production Projects”. Depending on what you hope to do with the data you probabbly do not want to download all of the files. Depending on your computation resources you may not be able to run all stages of the analysis. The code for all stages of the analysis, including typesetting the manuscript and running the analysis, is in code.tar. If you only want to run the final analysis or to play with datasets used in the analysis of the paper, you want intermediate_data.7z or the uncompressed tab and csv files. The data files are created in a four-stage process. The first stage uses the program “wikiq” to parse mediawiki xml dumps and create tsv files that have edit data for each wiki. The second stage generates all.edits.RDS file which combines these tsvs into a dataset of edits from all the wikis. This file is expensive to generate and at 1.5GB is pretty big. The third stage builds smaller intermediate files that contain the analytical variables from these tsv files. The fourth stage uses the intermediate files to generate smaller RDS files that contain the results. Finally, knitr and latex typeset the manuscript. A stage will only run if the outputs from the previous stages do not exist. So if the intermediate files exist they will not be regenerated. Only the final analysis will run. The exception is that stage 4, fitting models and generating plots, always runs. If you only want to replicate from the second stage onward, you want wikiq_tsvs.7z. If you want to replicate everything, you want wikia_mediawiki_xml_dumps.7z.001 wikia_mediawiki_xml_dumps.7z.002, and wikia_mediawiki_xml_dumps.7z.003. These instructions work backwards from building the manuscript using knitr, loading the datasets, running the analysis, to building the intermediate datasets. Building the manuscript using knitr This requires working latex, latexmk, and knitr installations. Depending on your operating system you might install these packages in different ways. On Debian Linux you can run apt install r-cran-knitr latexmk texlive-latex-extra. Alternatively, you can upload the necessary files to a project on Overleaf.com. Download code.tar. This has everything you need to typeset the manuscript. Unpack the tar archive. On a unix system this can be done by running tar xf code.tar. Navigate to code/paper_source. Install R dependencies. In R. run install.packages(c("data.table","scales","ggplot2","lubridate","texreg")) On a unix system you should be able to run make to build the manuscript generalizable_wiki.pdf. Otherwise you should try uploading all of the files (including the tables, figure, and knitr folders) to a new project on Overleaf.com. Loading intermediate datasets The intermediate datasets are found in the intermediate_data.7z archive. They can be extracted on a unix system using the command 7z x intermediate_data.7z. The files are 95MB uncompressed. These are RDS (R data set) files and can be loaded in R using the readRDS. For example newcomer.ds <- readRDS("newcomers.RDS"). If you wish to work with these datasets using a tool other than R, you might prefer to work with the .tab files. Running the analysis Fitting the models may not work on machines with less than 32GB of RAM. If you have trouble, you may find the functions in lib-01-sample-datasets.R useful to create stratified samples of data for fitting models. See line 89 of 02_model_newcomer_survival.R for an example. Download code.tar and intermediate_data.7z to your working folder and extract both archives. On a unix system this can be done with the command tar xf code.tar && 7z x intermediate_data.7z. Install R dependencies. install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). On a unix system you can simply run regen.all.sh to fit the models, build the plots and create the RDS files. Generating datasets Building the intermediate files The intermediate files are generated from all.edits.RDS. This process requires about 20GB of memory. Download all.edits.RDS, userroles_data.7z,selected.wikis.csv, and code.tar. Unpack code.tar and userroles_data.7z. On a unix system this can be done using tar xf code.tar && 7z x userroles_data.7z. Install R dependencies. In R run install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). Run 01_build_datasets.R. Building all.edits.RDS The intermediate RDS files used in the analysis are created from all.edits.RDS. To replicate building all.edits.RDS, you only need to run 01_build_datasets.R when the int... Visit https://dataone.org/datasets/sha256%3Acfa4980c107154267d8eb6dc0753ed0fde655a73a062c0c2f5af33f237da3437 for complete metadata about this dataset.

  14. Data from: Ecosystem-Level Determinants of Sustained Activity in Open-Source...

    • zenodo.org
    application/gzip, bin +2
    Updated Aug 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb (2024). Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A Case Study of the PyPI Ecosystem [Dataset]. http://doi.org/10.5281/zenodo.1419788
    Explore at:
    bin, application/gzip, zip, text/x-pythonAvailable download formats
    Dataset updated
    Aug 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Marat Valiev; Marat Valiev; Bogdan Vasilescu; James Herbsleb; Bogdan Vasilescu; James Herbsleb
    License

    https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html

    Description
    Replication pack, FSE2018 submission #164:
    ------------------------------------------
    
    **Working title:** Ecosystem-Level Factors Affecting the Survival of Open-Source Projects: 
    A Case Study of the PyPI Ecosystem
    
    **Note:** link to data artifacts is already included in the paper. 
    Link to the code will be included in the Camera Ready version as well.
    
    
    Content description
    ===================
    
    - **ghd-0.1.0.zip** - the code archive. This code produces the dataset files 
     described below
    - **settings.py** - settings template for the code archive.
    - **dataset_minimal_Jan_2018.zip** - the minimally sufficient version of the dataset.
     This dataset only includes stats aggregated by the ecosystem (PyPI)
    - **dataset_full_Jan_2018.tgz** - full version of the dataset, including project-level
     statistics. It is ~34Gb unpacked. This dataset still doesn't include PyPI packages
     themselves, which take around 2TB.
    - **build_model.r, helpers.r** - R files to process the survival data 
      (`survival_data.csv` in **dataset_minimal_Jan_2018.zip**, 
      `common.cache/survival_data.pypi_2008_2017-12_6.csv` in 
      **dataset_full_Jan_2018.tgz**)
    - **Interview protocol.pdf** - approximate protocol used for semistructured interviews.
    - LICENSE - text of GPL v3, under which this dataset is published
    - INSTALL.md - replication guide (~2 pages)
    Replication guide
    =================
    
    Step 0 - prerequisites
    ----------------------
    
    - Unix-compatible OS (Linux or OS X)
    - Python interpreter (2.7 was used; Python 3 compatibility is highly likely)
    - R 3.4 or higher (3.4.4 was used, 3.2 is known to be incompatible)
    
    Depending on detalization level (see Step 2 for more details):
    - up to 2Tb of disk space (see Step 2 detalization levels)
    - at least 16Gb of RAM (64 preferable)
    - few hours to few month of processing time
    
    Step 1 - software
    ----------------
    
    - unpack **ghd-0.1.0.zip**, or clone from gitlab:
    
       git clone https://gitlab.com/user2589/ghd.git
       git checkout 0.1.0
     
     `cd` into the extracted folder. 
     All commands below assume it as a current directory.
      
    - copy `settings.py` into the extracted folder. Edit the file:
      * set `DATASET_PATH` to some newly created folder path
      * add at least one GitHub API token to `SCRAPER_GITHUB_API_TOKENS` 
    - install docker. For Ubuntu Linux, the command is 
      `sudo apt-get install docker-compose`
    - install libarchive and headers: `sudo apt-get install libarchive-dev`
    - (optional) to replicate on NPM, install yajl: `sudo apt-get install yajl-tools`
     Without this dependency, you might get an error on the next step, 
     but it's safe to ignore.
    - install Python libraries: `pip install --user -r requirements.txt` . 
    - disable all APIs except GitHub (Bitbucket and Gitlab support were
     not yet implemented when this study was in progress): edit
     `scraper/init.py`, comment out everything except GitHub support
     in `PROVIDERS`.
    
    Step 2 - obtaining the dataset
    -----------------------------
    
    The ultimate goal of this step is to get output of the Python function 
    `common.utils.survival_data()` and save it into a CSV file:
    
      # copy and paste into a Python console
      from common import utils
      survival_data = utils.survival_data('pypi', '2008', smoothing=6)
      survival_data.to_csv('survival_data.csv')
    
    Since full replication will take several months, here are some ways to speedup
    the process:
    
    ####Option 2.a, difficulty level: easiest
    
    Just use the precomputed data. Step 1 is not necessary under this scenario.
    
    - extract **dataset_minimal_Jan_2018.zip**
    - get `survival_data.csv`, go to the next step
    
    ####Option 2.b, difficulty level: easy
    
    Use precomputed longitudinal feature values to build the final table.
    The whole process will take 15..30 minutes.
    
    - create a folder `
  15. d

    Comma separated value (CSV) text files of navigation and elevation data...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Comma separated value (CSV) text files of navigation and elevation data collected by the U.S. Geological Survey during field activity 2016-030-FA offshore Sandwich Beach, MA in June 2016 [Dataset]. https://catalog.data.gov/dataset/comma-separated-value-csv-text-files-of-navigation-and-elevation-data-collected-by-the-u-s
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The objectives of the survey were to provide bathymetric and sidescan sonar data for sediment transport studies and coastal change model development for ongoing studies of nearshore coastal dynamics along Sandwich Town Neck Beach, MA. Data collection equipment used for this investigation are mounted on an unmanned surface vehicle (USV) uniquely adapted from a commercially sold gas-powered kayak and termed the "jetyak". The jetyak design is the result of a collaborative effort between USGS and Woods Hole Oceanographic Institution (WHOI) scientists.

  16. Z

    Data from: Clotho dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated May 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Konstantinos Drossos (2021). Clotho dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3490683
    Explore at:
    Dataset updated
    May 30, 2021
    Dataset provided by
    Samuel Lipping
    Konstantinos Drossos
    Tuomas Virtanen
    Description

    Clotho is an audio captioning dataset, now reached version 2. Clotho consists of 6974 audio samples, and each audio sample has five captions (a total of 34 870 captions). Audio samples are of 15 to 30 s duration and captions are eight to 20 words long.

    Clotho is thoroughly described in our paper:

    K. Drossos, S. Lipping and T. Virtanen, "Clotho: an Audio Captioning Dataset," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 736-740, doi: 10.1109/ICASSP40776.2020.9052990.

    available online at: https://arxiv.org/abs/1910.09387 and at: https://ieeexplore.ieee.org/document/9052990

    If you use Clotho, please cite our paper.

    To use the dataset, you can use our code at: https://github.com/audio-captioning/clotho-dataset

    These are the files for the development, validation, and evaluation splits of Clotho dataset.

    == Changes in version 2.1 ==

    In version 2.1 of Clotho, we fixed some files that were corrupted from the compression and transferring processes (around 150 files) and we also replaced some characters that were illegal for most filesystems, e.g. ":" (around 10 files).

    Please use this version for your experiments.

    == Changes in version 2 ==

    In version 2 of Clotho, there are audio files added in the development split and a new validation split is added. There are no changes in the evaluation split.

    Specifically:

    Now there are 3840 audio files in the development split. In Clotho version 1, there were 2893 audio files. Now, 947 new audio files are added.

    There are 1046 new audio files in the validation split.

    All new captions are treated as in version 1 of Clotho, i.e. having word consistency, no named entities, no speech transcription, and no hapax legomena between splits (i.e. words appearing only in one of the splits).

    == Usage ==

    To use the dataset you have to:

    Download the audio files: clotho_audio_development.7z,clotho_audio_validation.7z, and clotho_audio_evalution.7z

    Download the files with the captions: clotho_captions_development.csv, clotho_captions_validation.csv, and clotho_captions_evaluation.csv

    Download the files with the associated metadata: clotho_metadata_development.csv, clotho_metadata_validation.csv, and clotho_metadata_evaluation.csv

    Extract the audio files

    Then you can use each audio file with its corresponding captions

    == License ==

    The audio files in the archives:

    clotho_audio_development.7z,

    clotho_audio_validation.7z, and

    clotho_audio_evalution.7z

    and the associated meta-data in the CSV files:

    clotho_metadata_development.csv

    clotho_metadata_validation.csv

    clotho_metadata_evaluation.csv

    are under the corresponding licences (mostly CreativeCommons with attribution) of Freesound [1] platform, mentioned explicitly in the CSV files for each of the audio files. That is, each audio file in the 7z archives is listed in the CSV files with the meta-data. The meta-data for each file are:

    File name

    Keywords

    URL for the original audio file

    Start and ending samples for the excerpt that is used in the Clotho dataset

    Uploader/user in the Freesound platform (manufacturer)

    Link to the licence of the file

    The captions in the files:

    clotho_captions_development.csv

    clotho_captions_validation.csv

    clotho_captions_evaluation.csv

    are under the Tampere University licence, described in the LICENCE file (mainly a non-commercial with attribution licence).

    == References == [1] Frederic Font, Gerard Roma, and Xavier Serra. 2013. Freesound technical demo. In Proceedings of the 21st ACM international conference on Multimedia (MM '13). ACM, New York, NY, USA, 411-412. DOI: https://doi.org/10.1145/2502081.2502245

  17. World cities database

    • kaggle.com
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juanma Hernández (2025). World cities database [Dataset]. http://doi.org/10.34740/kaggle/dsv/11944536
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Juanma Hernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is from:

    https://simplemaps.com/data/world-cities

    We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.

    Our database is:

    • Up-to-date: It was last refreshed on May 11, 2025.
    • Comprehensive: Over 4 million unique cities and towns from every country in the world (about 48 thousand in basic database).
    • Accurate: Cleaned and aggregated from official sources. Includes latitude and longitude coordinates.
    • Simple: A single CSV file, concise field names, only one entry per city.
  18. Purchase Order Data

    • data.ca.gov
    • s.cnmilf.com
    • +1more
    csv, docx, pdf
    Updated Oct 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of General Services (2019). Purchase Order Data [Dataset]. https://data.ca.gov/dataset/purchase-order-data
    Explore at:
    csv, pdf, docxAvailable download formats
    Dataset updated
    Oct 23, 2019
    Dataset authored and provided by
    California Department of General Services
    Description

    The State Contract and Procurement Registration System (SCPRS) was established in 2003, as a centralized database of information on State contracts and purchases over $5000. eSCPRS represents the data captured in the State's eProcurement (eP) system, Bidsync, as of March 16, 2009. The data provided is an extract from that system for fiscal years 2012-2013, 2013-2014, and 2014-2015

    Data Limitations:
    Some purchase orders have multiple UNSPSC numbers, however only first was used to identify the purchase order. Multiple UNSPSC numbers were included to provide additional data for a DGS special event however this affects the formatting of the file. The source system Bidsync is being deprecated and these issues will be resolved in the future as state systems transition to Fi$cal.

    Data Collection Methodology:

    The data collection process starts with a data file from eSCPRS that is scrubbed and standardized prior to being uploaded into a SQL Server database. There are four primary tables. The Supplier, Department and United Nations Standard Products and Services Code (UNSPSC) tables are reference tables. The Supplier and Department tables are updated and mapped to the appropriate numbering schema and naming conventions. The UNSPSC table is used to categorize line item information and requires no further manipulation. The Purchase Order table contains raw data that requires conversion to the correct data format and mapping to the corresponding data fields. A stacking method is applied to the table to eliminate blanks where needed. Extraneous characters are removed from fields. The four tables are joined together and queries are executed to update the final Purchase Order Dataset table. Once the scrubbing and standardization process is complete the data is then uploaded into the SQL Server database.

    Secondary/Related Resources:

  19. Z

    Data from: Caravan - A global community dataset for large-sample hydrology

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gudmundsson, Lukas (2025). Caravan - A global community dataset for large-sample hydrology [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6522634
    Explore at:
    Dataset updated
    Jan 16, 2025
    Dataset provided by
    Matias, Yossi
    Erickson, Tyler
    Gudmundsson, Lukas
    Shalev, Guy
    Gauch, Martin
    Kratzert, Frederik
    Addor, Nans
    Hassidim, Avinatan
    Nevo, Sella
    Klotz, Daniel
    Nearing, Grey
    Gilon, Oren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the accompanying dataset to the following paper https://www.nature.com/articles/s41597-023-01975-w

    Caravan is an open community dataset of meteorological forcing data, catchment attributes, and discharge daat for catchments around the world. Additionally, Caravan provides code to derive meteorological forcing data and catchment attributes from the same data sources in the cloud, making it easy for anyone to extend Caravan to new catchments. The vision of Caravan is to provide the foundation for a truly global open source community resource that will grow over time.

    If you use Caravan in your research, it would be appreciated to not only cite Caravan itself, but also the source datasets, to pay respect to the amount of work that was put into the creation of these datasets and that made Caravan possible in the first place.

    All current development and additional community extensions can be found at https://github.com/kratzert/Caravan

    Channel Log:

    23 May 2022: Version 0.2 - Resolved a bug when renaming the LamaH gauge ids from the LamaH ids to the official gauge ids provided as "govnr" in the LamaH dataset attribute files.

    24 May 2022: Version 0.3 - Fixed gaps in forcing data in some "camels" (US) basins.

    15 June 2022: Version 0.4 - Fixed replacing negative CAMELS US values with NaN (-999 in CAMELS indicates missing observation).

    1 December 2022: Version 0.4 - Added 4298 basins in the US, Canada and Mexico (part of HYSETS), now totalling to 6830 basins. Fixed a bug in the computation of catchment attributes that are defined as pour point properties, where sometimes the wrong HydroATLAS polygon was picked. Restructured the attribute files and added some more meta data (station name and country).

    16 January 2023: Version 1.0 - Version of the official paper release. No changes in the data but added a static copy of the accompanying code of the paper. For the most up to date version, please check https://github.com/kratzert/Caravan

    10 May 2023: Version 1.1 - No data change, just update data description.

    17 May 2023: Version 1.2 - Updated a handful of attribute values that were affected by a bug in their derivation. See https://github.com/kratzert/Caravan/issues/22 for details.

    16 April 2024: Version 1.4 - Added 9130 gauges from the original source dataset that were initially not included because of the area thresholds (i.e. basins smaller than 100sqkm or larger than 2000sqkm). Also extended the forcing period for all gauges (including the original ones) to 1950-2023. Added two different download options that include timeseries data only as either csv files (Caravan-csv.tar.xz) or netcdf files (Caravan-nc.tar.xz). Including the large basins also required an update in the earth engine code

    16 Jan 2025: Version 1.5 - Added FAO Penman-Monteith PET (potential_evaporation_sum_FAO_PENMAN_MONTEITH) and renamed the ERA5-LAND potential_evaporation band to potential_evaporation_sum_ERA5_LAND. Also added all PET-related climated indices derived with the Penman-Monteith PET band (suffix "_FAO_PM") and renamed the old PET-related indices accordingly (suffix "_ERA5_LAND").

  20. DBpedia Ontology

    • kaggle.com
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). DBpedia Ontology [Dataset]. https://www.kaggle.com/datasets/thedevastator/dbpedia-ontology-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    DBpedia Ontology

    Text Classification Dataset with 14 Classes

    By dbpedia_14 (From Huggingface) [source]

    About this dataset

    The DBpedia Ontology Classification Dataset, known as dbpedia_14, is a comprehensive and meticulously constructed dataset containing a vast collection of text samples. These samples have been expertly classified into 14 distinct and non-overlapping classes. The dataset draws its information from the highly reliable and up-to-date DBpedia 2014 knowledge base, ensuring the accuracy and relevance of the data.

    Each text sample in this extensive dataset consists of various components that provide valuable insights into its content. These components include a title, which succinctly summarizes the main topic or subject matter of the text sample, and content that comprehensively covers all relevant information related to a specific topic.

    To facilitate effective training of machine learning models for text classification tasks, each text sample is further associated with a corresponding label. This categorical label serves as an essential element for supervised learning algorithms to classify new instances accurately.

    Furthermore, this exceptional dataset is part of the larger DBpedia Ontology Classification Dataset with 14 Classes (dbpedia_14). It offers numerous possibilities for researchers, practitioners, and enthusiasts alike to conduct in-depth analyses ranging from sentiment analysis to topic modeling.

    Aspiring data scientists will find great value in utilizing this well-organized dataset for training their machine learning models. Although specific details about train.csv and test.csv files are not provided here due to their dynamic nature, they play pivotal roles during model training and testing processes by respectively providing labeled training samples and unseen test samples.

    Lastly, it's worth mentioning that users can refer to the included classes.txt file within this dataset for an exhaustive list of all 14 classes used in classifying these diverse text samples accurately.

    Overall, with its wealth of carefully curated textual data across multiple domains and precise class labels assigned based on well-defined categories derived from DBpedia 2014 knowledge base, the DBpedia Ontology Classification Dataset (dbpedia_14) proves instrumental in advancing research efforts related to natural language processing (NLP), text classification, and other related fields

    Research Ideas

    • Text classification: The DBpedia Ontology Classification Dataset can be used to train machine learning models for text classification tasks. With 14 different classes, the dataset is suitable for various classification tasks such as sentiment analysis, topic classification, or intent detection.
    • Ontology development: The dataset can also be used to improve or expand existing ontologies. By analyzing the text samples and their assigned labels, researchers can identify missing or incorrect relationships between concepts in the ontology and make improvements accordingly.
    • Semantic search engine: The DBpedia knowledge base is widely used in semantic search engines that aim to provide more accurate and relevant search results by understanding the meaning of user queries and matching them with structured data. This dataset can help in training models for improving the performance of these semantic search engines by enhancing their ability to classify and categorize information accurately based on user queries

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: train.csv | Column name | Description | |:--------------|:---------------------------------------------------------------------------------------------------------| | label | The class label assigned to each text sample. (Categorical) | | title | The heading or name given to each text sample, providing some context or overview of its content. (Text) |

    File: test.csv | Column name | Description | |:--------------|:-----------------------...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Madelon Hulsebos; Çağatay Demiralp; Paul Groth; Madelon Hulsebos; Çağatay Demiralp; Paul Groth (2022). GitTables 1M - CSV files [Dataset]. http://doi.org/10.5281/zenodo.6515973
Organization logo

GitTables 1M - CSV files

Explore at:
zipAvailable download formats
Dataset updated
Jun 6, 2022
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Madelon Hulsebos; Çağatay Demiralp; Paul Groth; Madelon Hulsebos; Çağatay Demiralp; Paul Groth
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This dataset contains >800K CSV files behind the GitTables 1M corpus.

For more information about the GitTables corpus, visit:

- our website for GitTables, or

- the main GitTables download page on Zenodo.

Search
Clear search
Close search
Google apps
Main menu