ScanNet++ is a large scale dataset with 450+ 3D indoor scenes containing sub-millimeter resolution laser scans, registered 33-megapixel DSLR images, and commodity RGB-D streams from iPhone. The 3D reconstructions are annotated with long-tail and label-ambiguous semantics to benchmark semantic understanding methods, while the coupled DSLR and iPhone captures enable benchmarking of novel view synthesis methods in high-quality and commodity settings.
The ScanNet200 benchmark studies 200-class 3D semantic segmentation - an order of magnitude more class categories than previous 3D scene understanding benchmarks. The source of scene data is identical to ScanNet, but parses a larger vocabulary for semantic and instance segmentation
Not seeing a result you expected?
Learn how you can add new datasets to our index.
ScanNet++ is a large scale dataset with 450+ 3D indoor scenes containing sub-millimeter resolution laser scans, registered 33-megapixel DSLR images, and commodity RGB-D streams from iPhone. The 3D reconstructions are annotated with long-tail and label-ambiguous semantics to benchmark semantic understanding methods, while the coupled DSLR and iPhone captures enable benchmarking of novel view synthesis methods in high-quality and commodity settings.