Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Year. You can refer the same here
Facebook
TwitterThe Facility Registry System (FRS) identifies facilities, sites, or places subject to environmental regulation or of environmental interest to EPA programs or delegated states. Using vigorous verification and data management procedures, FRS integrates facility data from program national systems, state master facility records, tribal partners, and other federal agencies and provides the Agency with a centrally managed, single source of comprehensive and authoritative information on facilities.
Facebook
TwitterOverview
The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.
National Geospatial Data Asset
This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee.
Dataset Source Details
Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.
Cartographic Visualization
The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below.
Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html
Contact
Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip
Attribute Structure
The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension
These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE
The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB.
Core Attributes
The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields.
County Code and Country Name Fields
“CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard.
The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.
Descriptive Fields
The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes
Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line.
ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line
A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively.
The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps.
The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line.
Use of Core Attributes in Cartographic Visualization
Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between:
Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction.
The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling.
Use of
Facebook
TwitterThis map layer portrays the State boundaries of the United States, Puerto Rico, and the U.S. Virgin Islands. The map layer was created by extracting county polygon features from the CENSUS 2006 TIGER/Line files produced by the U.S. Census Bureau. These files were then merged into a single file and county boundaries within States were removed. This is a revised version of the July 2012 map layer.The data and related materials are made available through Esri (http://www.esri.com) and are intended for educational purposes only (see Access and Use Constraints section).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Monthly State Retail Sales (MSRS) is the Census Bureau's new experimental data product featuring modeled state-level retail sales. This is a blended data product using Monthly Retail Trade Survey data, administrative data, and third-party data. Year-over-year percentage changes are available for Total Retail Sales excluding Non-store Retailers as well as 11 retail North American Industry Classification System (NAICS) retail subsectors. These data are provided by state and NAICS codes beginning with January 2019.
Geography: US
Time period: 2019 - 2022
Unit of analysis: US Census Bureau's Monthly State Retail Sales Data
| Variable | Description |
|---|---|
| fips | 2-digit State Federal Information Processing Standards (FIPS) code. For more information on FIPS Codes, please reference this document. Note: The US is assigned a "00" State FIPS code. |
| state_abbr | States are assigned 2-character official U.S. Postal Service Code. The United States is assigned "USA" as its state_abbr value. For more information, please reference this document. |
| naics | Three-digit numeric NAICS value for retail subsector code. |
| subsector | Retail subsector. |
| year | Year. |
| month | Month. |
| change_yoy | Numeric year-over-year percent change in retail sales value. |
| change_yoy_se | Numeric standard error for year-over-year percentage change in retail sales value. |
| coverage_code | Character values assigned based on the non-imputed coverage of the data. |
| Variable | Description |
|---|---|
| coverage_code | Character values assigned based on the non-imputed coverage of the data. |
| coverage | Definition of the codes. |
Datasource: United States Census Bureau's Monthly State Retail Sales
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F51529449c5ea6477431748f5c1b8a83f%2Fpic1.png?generation=1720540453192512&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F831d14b5312bdda036b66793c4ed6944%2Fpic2.png?generation=1720540466019416&alt=media" alt="">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of United States by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of United States across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.5% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Gender. You can refer the same here
Facebook
TwitterThe Counties dataset was updated on October 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are mostly as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529015
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains information on population in entire USA.
Note that the file type is gpkg, not csv, therefore the preview is not supported on Kaggle.
However, I created a table and included it here and in the "About this file" section, so you can see what is inside.
Gpkg stands for GeoPackage and contains geospatial information. This kind of information can be used for creating maps with data (like on the image of this dataset).
There are 3 variables and 4.268.708 observations.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F11745954%2F1ad5a1af3cf5156087317f2ce047be8e%2FScreenshot%202023-01-10%20at%2010.33.11.png?generation=1673343424696942&alt=media" alt="">
To read this file you will need in R:
library(sd)
st_read()
or in Python:
import fiona
with fiona.open("path/to/file.gpkg", "r")
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of United States, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of United States.
Key observations
Among the Hispanic population in United States, regardless of the race, the largest group is of Mexican origin, with a population of 37.44 million (59.31% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Race & Ethnicity. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1937611%2F82267b1a15f8669ec2a072972bebccb5%2Fquality-of-life-by-us-state.png?generation=1717697280376438&alt=media" alt="">
This dataset provides insights into the quality of life across different states in the United States for the year 2024. Quality of life, encompassing aspects like comfort, health, and happiness, is evaluated through various metrics including affordability, economy, education, and safety. Dive into this dataset to understand how different states fare in terms of overall quality of life and its individual components.
These descriptions provide an overview of what each column represents and the specific aspects of quality of life they assess for each U.S. state.
Facebook
TwitterThe Facility Registry System (FRS) identifies facilities, sites, or places subject to environmental regulation or of environmental interest to EPA programs or delegated states. Using vigorous verification and data management procedures, FRS integrates facility data from program national systems, state master facility records, tribal partners, and other federal agencies and provides the Agency with a centrally managed, single source of comprehensive and authoritative information on facilities.
Facebook
TwitterThe Facility Registry System (FRS) identifies facilities, sites, or places subject to environmental regulation or of environmental interest to EPA programs or delegated states. Using vigorous verification and data management procedures, FRS integrates facility data from program national systems, state master facility records, tribal partners, and other federal agencies and provides the Agency with a centrally managed, single source of comprehensive and authoritative information on facilities.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can download data or view data tables on topics related to the labor force of the United States. Background Current Population Survey is a joint effort between the Bureau of Labor Statistics and the Census Bureau. It provides information and data on the labor force of the United States, such as: employment, unemployment, earnings, hours of work, school enrollment, health, employee benefits and income. The CPS is conducted monthly and has a sample of approximately 50,000 households. It is representative of the non-institutionalized US population. The sample provides estimates for the nation as a whole and serves as part of model-based estimates for individual states and other geographic areas. User Functionality Users can download data sets or view data tables on their topic of interest. Data can be organized by a variety of demographic variables, including: sex, age, race, marital status and educational attainment. Data is available on a national or state level. Data Notes The CPS is conducted monthly and has a sample of approximately 50,000 households. It is representative of the non-institutionalized US population. The sample provides estimates for th e nation as a whole and serves as part of model-based estimates for individual states and other geographic areas.
Facebook
TwitterThe statistic shows the result on a survey about whether consumers subscribe to podcasts or download each episode separately in the United States in 2017, sorted by gender. During the survey, ** percent of female respondents stated that they downloaded all podcast episodes separately.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 50 states in the United States by Kazakh population, as estimated by the United States Census Bureau. It also highlights population changes in each state over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterIn June 2025, UberEats garnered just under *********** app downloads in the United States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of State Line by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of State Line across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of male population, with 51.72% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for State Line Population by Gender. You can refer the same here
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for State and Local Government: Other Indirectly Held Assets: Mutual Funds (QPRHLDTMFINDHOLDINGSUSNO) from Q1 2019 to Q2 2025 about mutual funds, pension, state & local, assets, government, and USA.
Facebook
TwitterThis feature layer contains census tracts for the San Francisco Bay Region for Census 2000. The features were extracted from a statewide data set downloaded from the United States Census Bureau by Metropolitan Transportation Commission staff.The purpose of this feature layer is for the production of feature sets for public access and download to avoid licensing issues related to the agency's base data.Source data downloaded from https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html_The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the United States Census Bureau's Master Address File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the Census 2000 Participant Statistical Areas Program (PSAP). The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,500 and 8,000 people, with an optimum size of 4,000 people.When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, etc. may require boundary revisions before a census. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries are always census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From https://www.bts.gov/faf/county:The Freight Analysis Framework (FAF) database provides estimates of the weight and value of shipments throughout the United States for all commodity types and forms of transportation using a geographic system of 132 FAF zones. The Bureau of Transportation Statistics (BTS) developed an experimental county-to-county commodity flow product to provide the user community with more geographically granular commodity flow data to support planning, policymaking, and operational decisions at the state and local levels. Users can download state-specific files or the entire set of disaggregation factors to create customized queries. This experimental product provides flows for five commodity groups and five mode categories (see documentation for more details). BTS welcomes users to email FAF@dot.gov with feedback on this experimental product.The state FIPS code is also shown next to the state. Each zip file contains four tables with 1) county-level OD flows for the state of interest and every adjacent state, 2) county-to-FAF OD flows from the multi-state area to all other FAF zones, 3) FAF-to-county OD flows from all other FAF zones to the multi-state area, and 4) FAF-to-FAF OD flows from all other FAF zones to all other FAF zones. The files use county-level geography for the state of interest and states adjacent to this state. FAF zones represent flows outside of this area.The main Freight Analysis Framework files are loaded to Data Lumos separately here: https://www.datalumos.org/datalumos/project/231642/version/V1/view. Additional documentation is available at that link.The faf5_county_readme.txt and faf5_county_readme.xlsx were created for this upload and were not created by the DOT. The direct url to download each state-level dataset is in faf5_county_readme.xlsx.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Year. You can refer the same here