91 datasets found
  1. a

    Satellite Maps 3D Scene 2023 - for website

    • noaa.hub.arcgis.com
    Updated Jul 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2023). Satellite Maps 3D Scene 2023 - for website [Dataset]. https://noaa.hub.arcgis.com/maps/320e766fff7d4b5a8280c86373ee60e0
    Explore at:
    Dataset updated
    Jul 24, 2023
    Dataset authored and provided by
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the Maps​What does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why are the North and South Poles dark?The raw satellite data used in these web map apps goes through several processing steps after it has been acquired from space. These steps translate the raw data into geospatial data and imagery projected onto a map. NOAA Satellite Maps uses the Mercator projection to portray the Earth's 3D surface in two dimensions. This Mercator projection does not include data at 80 degrees north and south latitude due to distortion, which is why the poles appear black in these maps. NOAA's polar satellites are a critical resource in acquiring operational data at the poles of the Earth and some of this imagery is available on our website (for example, here ).Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?NOAA Satellite Maps offers an interoperable map service to the public. Use the camera tool to select the area of the map you would like to capture and click ‘download GIS WorldFile.’The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?What am I seeing in the NOAA Satellite Maps 3D Scene?There are four options to choose from, each depicting a different view of the Earth using the latest satellite imagery available. The first three views show the Western Hemisphere and the Pacific Ocean, as captured by the NOAA GOES East (GOES-16) and GOES West (GOES-17) satellites. These images are updated approximately every 15 minutes as we receive data from the satellites in space. The three views show GeoColor, infrared and water vapor. See our other FAQs to learn more about what the imagery layering options depict.The fourth option is a global view, captured by NOAA’s polar-orbiting satellites (NOAA/NASA Suomi NPP and NOAA-20). The polar satellites circle the globe 14 times a day, taking in one complete view of the Earth in daylight every 24 hours. This composite view is what is projected onto the 3D map scene each morning, so you are seeing how the Earth looked from space one day ago.What am I seeing in the Latest 24 Hrs. GOES Constellation Map?In this map you are seeing the past 24 hours (updated approximately every 15 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-17) satellites. In this map you can also view three different ‘layers’. The three views show ‘GeoColor’ ‘infrared’ and ‘water vapor’.(Please note: GOES West imagery is currently only available in GeoColor. The infrared and water vapor imagery will be available in Spring 2019.)This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What am I seeing in the Global Archive Map?In this map, you will see the whole Earth as captured each day by our polar satellites, based on our multi-year archive of data. This data is provided by NOAA’s polar orbiting satellites (NOAA/NASA Suomi NPP from January 2014 to April 19, 2018 and NOAA-20 from April 20, 2018 to today). The polar satellites circle the globe 14 times a day taking in one complete view of the Earth every 24 hours. This complete view is what is projected onto the flat map scene each morning.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in

  2. n

    QuickBird full archive

    • cmr.earthdata.nasa.gov
    • eocat.esa.int
    • +2more
    not provided
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). QuickBird full archive [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1965336934-ESA.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Time period covered
    Nov 1, 2001 - Mar 31, 2015
    Area covered
    Earth
    Description

    QuickBird high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section.

    In particular, QuickBird offers archive panchromatic products up to 0.60 m GSD resolution and 4-Bands Multispectral products up to 2.4 m GSD resolution.

    Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard(2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12,000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm

    4-Bands being an option from:

    4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1) Natural Colour / Coloured Infrared (3-Band pan-sharpened) Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique intelligently increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well reconstructed details.

  3. Imagery-Satellite-SPOT 2022

    • researchdata.edu.au
    Updated May 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nsw.gov.au (2024). Imagery-Satellite-SPOT 2022 [Dataset]. https://researchdata.edu.au/imagery-satellite-spot-2022/2959381
    Explore at:
    Dataset updated
    May 20, 2024
    Dataset provided by
    Government of New South Waleshttp://nsw.gov.au/
    Area covered
    Description

    The NSW SPOT6/7 imagery product is a state-wide satellite imagery product provided by Geoimage Pty Ltd for NSW Government. The images were captured September 2021 through to March 2022. The imagery scenes used to create the NSW mosaic includes Lord Howe Island. This imagery data set has been acquired through GeoImages Pty Ltd and Airbus Defence and Space. \r \r SPOT imagery products offer high resolution over broad areas using the SPOT 6/7 satellites. A SPOT satellite acquisition covers large areas in a single pass at resolutions up to 1.5m. Such precise coverage is ideal for applications at national and regional scales from 1:250,000 to 1:15,000. SPOT 6/7 also includes the benefits of the near-infrared (NIR) which enables applications for detection of features not visible to the human eye, such as detecting and monitoring vegetation health.\r \r Data products supplied for all of NSW are:\r \r 1. State-wide mosaic \r \r 2. 100k Mapsheet tiles (GDA94 and GDA2020)\r \r 3. Multi spectral scenes (GDA94 and GDA2020)\r \r 4. Pan sharpened scenes (GDA94 and GDA2020)\r \r 5. Panchromatic scenes (GDA94 and GDA2020)\r \r 6. Shapefile cutlines of statewide mosaic \r \r \r The statewide mosaic is provided as a Red Green Blue (RGB) band combination; contrast enhanced lossless 8-bit JPEG2000 file (456gb in size). Individual 100k mapsheet mosaics contain BGR+NIR band combination; unenhanced 16-bit GeoTIFF format tile.\r \r The NSW mosaic is available from internal DPE APOLLO Image Webserver for DCCEEW employees.\r \r The 4band 100k mapsheet tiles are available for download from JDAP.\r The rectified multispectral, pan sharpened and panchromatic scenes are available for download from JDAP (pending)\r \r Acknowledgement when referencing: includes material © CNES_ (year of production), Distribution Airbus Services/SPOT Image, S.A, France, all rights reserved\r \r Contact spatial.imagery@environment.nsw.gov.au for further information or to request access to JDAP \r \r These image products are only available to other NSW Government agencies upon request.\r

  4. n

    High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska,...

    • cmr.earthdata.nasa.gov
    • datasets.ai
    • +4more
    not provided
    Updated May 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1386246127-NSIDCV0.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    May 23, 2023
    Time period covered
    Aug 1, 2002 - Aug 2, 2002
    Area covered
    Description

    This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats.

    Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format).

    Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks.

    The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data. Contact NSIDC User Services at nsidc@nsidc.org to order the data, and include an NSF OPP award number in the email.

  5. D

    Imagery-Satellite-SPOT 2010-2015

    • data.nsw.gov.au
    pdf
    Updated May 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Climate Change, Energy, the Environment and Water (2024). Imagery-Satellite-SPOT 2010-2015 [Dataset]. https://data.nsw.gov.au/data/dataset/spot-mosaic-nsw-2010_2015a
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 21, 2024
    Dataset provided by
    Department of Climate Change, Energy, the Environment and Water of New South Waleshttps://www.nsw.gov.au/departments-and-agencies/dcceew
    Description

    The NSW SPOT 5 imagery product is a state-wide satellite imagery product provided by the Remote Sensing and Regulatory Mapping team of NSW Government. Capture dates for imagery products for 2010-2015 are;

    • 2015 - September 2014 through to March 2015

    • 2014 - October 2013 through to August 2014

    • 2013 - January 2012 through to July 2013

    • 2012 - January 2011 through to July 2012

    • 2011 - November 2010 through to July 2011

    • 2010 - October 2009 through to August 2010

    The imagery scenes used to create the NSW mosaic includes Lord Howe Island. This imagery data sets for 2010-2012 have been supplied by SPOT imaging and processing done by GeoImage Pty Ltd. Imagery for 2013-2015 has been supplied by Astrium/Airbus and processed by GeoImage Pty Ltd.

    SPOT imagery products offer high resolution over broad areas using the SPOT 5 satellites. A SPOT satellite acquisition covers large areas in a single pass at resolutions up to 2.5m. Such precise coverage is ideal for applications at national and regional scales from 1:250,000 to 1:15,000.

    Data products supplied for all of NSW are:

    1. State-wide mosaic

    2. Reflectance scenes

    3. Panchromatic scenes

    The statewide mosaic is provided as a Red Green Blue (RGB) band combination; contrast enhanced lossless 8-bit JPEG2000 file.

    The NSW mosaic is available from internal DPE APOLLO Image Webserver for DCCEEW employees.

    The rectified reflectance and panchromatic scenes are available for download from JDAP.

    Contact spatial.imagery@environment.nsw.gov.au for further information or to request access to JDAP

    “Includes material © CNES 2010, 2011 & 2012, Distribution Astrium Services / Spot Image S.A., France, all rights reserved”

    These image products are only available to other NSW Government agencies upon request.

  6. a

    MAP for website - Satellite Maps Western Hemisphere 2.0

    • noaa.hub.arcgis.com
    Updated Aug 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2025). MAP for website - Satellite Maps Western Hemisphere 2.0 [Dataset]. https://noaa.hub.arcgis.com/maps/3970c89d67b34effb1026dca9ccd402c
    Explore at:
    Dataset updated
    Aug 6, 2025
    Dataset authored and provided by
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the Maps​What does the Layering Options icon mean? The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.What does the Time Slider icon do?The Time Slider widget enables you to view temporal layers in a map, and play the animation to see how the data changes over time. Using this widget, you can control the animation of the data with buttons to play and pause, go to the previous time period, and go to the next time period.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ). We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?In this map you are seeing the past 24 hours (updated approximately every 10 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-18) satellites. In this map you can also view four different ‘layers’. The views show ‘GeoColor’, ‘infrared’, and ‘water vapor’. This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What does the GOES GeoColor imagery show? The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent? In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in real time. Water vapor imagery, which is useful for determining locations of moisture and atmospheric circulations, is created using a wavelength of energy sensitive to the content of water vapor in the atmosphere. In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate little or no moisture present. This imagery is derived from band #10 on the GOES East and GOES West Advanced Baseline Imager.What do the colors on the water vapor map represent? In this imagery, green-blue and white areas indicate the presence of high water vapor or moisture content, whereas dark orange and brown areas indicate less moisture present. Learn more about this water vapor imagery.About the satellitesWhat are the GOES satellites?NOAA’s most sophisticated Geostationary Operational Environmental Satellites (GOES), known as the GOES-R Series, provide advanced imagery and atmospheric measurements of Earth’s Western Hemisphere, real-time mapping of lightning activity, and improved monitoring of solar activity and space weather.The first satellite in the series, GOES-R, now known as GOES-16, was launched in 2016 and is currently operational as NOAA’s GOES East satellite. In 2018, NOAA launched another satellite in the series, GOES-T, which joined GOES-16 in orbit as GOES-18. GOES-17 became operational as GOES West in January 2023.Together, GOES East and GOES West provide coverage of the Western Hemisphere and most of the Pacific Ocean, from the west coast of Africa all the way to New Zealand. Each satellite orbits the Earth from about 22,200 miles away.

  7. n

    GeoEye-1 full archive and tasking

    • cmr.earthdata.nasa.gov
    • eocat.esa.int
    • +2more
    not provided
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). GeoEye-1 full archive and tasking [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1965336913-ESA.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Time period covered
    Oct 1, 2008 - Present
    Area covered
    Earth
    Description

    GeoEye-1 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4 and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section.

    In particular, GeoEye-1 offers archive and tasking panchromatic products up to 0.41 m GSD resolution and Multispectral products up to 1.65 m GSD resolution.

    Band Combination Data Processing Level Resolutions Panchromatic and 4-bands Standard (2A) / View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12,000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm

    The options for 4-Bands are the following:

    4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1). Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well-reconstructed details.

    As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.

  8. n

    SPOT-6 to 7 full archive and tasking

    • cmr.earthdata.nasa.gov
    • eocat.esa.int
    • +1more
    not provided
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SPOT-6 to 7 full archive and tasking [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2547572697-ESA.html
    Explore at:
    not providedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Time period covered
    Oct 1, 2012 - Present
    Area covered
    Earth
    Description

    The SPOT 6 and 7 satellites ensure data continuity with the no longer operational SPOT 5 satellite and provide an archive of very high resolution optical acquisition as well as the possibility to task the satellites for new acquisitions. Following the completion of the SPOT 7 mission in March 2023, new acquisition tasking is only available for the SPOT 6 satellite. The ortho-products are automatically generated by the SPOT 6 and 7 ground segment, based on SRTM database or Reference3D when available. The projection available for SPOT 6 and 7 ortho-products is UTM, datum WGS84. Bands combinations: • Panchromatic: black&white image at 1.5 m resolution • Pansharpened: 3-bands or 4 bands colour image at 1.5 m resolution • Multispectral: 4 bands image at 6m resolution • Bundle: 1.5 m panchromatic image and 6 m multispectral image, co-registered. Geometric processing levels: • Primary: The Primary product is the processing level closest to the natural image acquired by the sensor. This product restores perfect collection conditions: the sensor is placed in rectilinear geometry, and the image is clear of all radiometric distortion. • Ortho: The Ortho product is a georeferenced image in Earth geometry, corrected from acquisition and terrain off-nadir effects. Available in MONO acquisition mode only. Acquisition modes: • Mono • Stereo • Tristero

    To complement the traditional and fully customised ordering and download of selected SPOT, Pleiades or Pleiades Neo images in a variety of data formats, you can also subscribe to the OneAtlas Living Library package where the entire OneAtlas optical archive of ortho images is updated on a daily basis and made available for streaming or download. The Living Library consist of • less-than-18-months-old imagery • a curation of SPOT images with no cloud cover and less than 30° incidence angle • Pléiades images acquired worldwide with maximum 15% cloud cover and 30° Incidence Angle • Pléiades Neo premium imagery selection with 2% cloud cover and 30° incidence angle These are the available subscription packages (to be consumed withing one year from the activation) OneAtlas Living Library subscription package 1: up to 230 km2 Pleiades Neo or 430 km2 Pleiades or 1.500 km2 SPOT in download, up to 500 km2 Pleiades Neo or 2.000 km2 Pleiades or 7.500 km2 SPOT in streaming OneAtlas Living Library subscription package 2: up to 654 km2 Pleiades Neo or 1.214 km2 Pleiades or 4.250 km2 SPOT in download, up to 1417 km2 Pleiades Neo or 5.666 km2 Pleiades or 21.250 km2 SPOT in streaming OneAtlas Living Library subscription package 3: up to 1.161 km2 Pleiades Neo or 2.156 km2 Pleiades or 7.545 km2 SPOT in download, up to 2.515 km2 Pleiades Neo or 10.060 km2 Pleiades or 37.723 km2 SPOT in streaming As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.

  9. D

    Imagery-Satellite-SPOT 2023

    • data.nsw.gov.au
    pdf
    Updated May 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSW Department of Climate Change, Energy, the Environment and Water (2024). Imagery-Satellite-SPOT 2023 [Dataset]. https://data.nsw.gov.au/data/dataset/spot-mosaic-nsw-2023a
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 21, 2024
    Dataset provided by
    Department of Climate Change, Energy, the Environment and Water of New South Waleshttps://www.nsw.gov.au/departments-and-agencies/dcceew
    Description

    The NSW SPOT6/7 imagery product is a state-wide satellite imagery product provided by Geoimage Pty Ltd for NSW Government. The images were captured September 2022 through to March 2023. The imagery scenes used to create the NSW mosaic includes Lord Howe Island. This imagery data set has been acquired through GeoImages Pty Ltd and Airbus Defence and Space.

    SPOT imagery products offer high resolution over broad areas using the SPOT 6/7 satellites. A SPOT satellite acquisition covers large areas in a single pass at resolutions up to 1.5m. Such precise coverage is ideal for applications at national and regional scales from 1:250,000 to 1:15,000. SPOT 6/7 also includes the benefits of the near-infrared (NIR) which enables applications for detection of features not visible to the human eye, such as detecting and monitoring vegetation health.

    Data products supplied for all of NSW are:

    1. State-wide mosaic

    2. 100k Mapsheet tiles (GDA94 and GDA2020)

    3. Multi spectral scenes (GDA94 and GDA2020)

    4. Pan sharpened scenes (GDA94 and GDA2020)

    5. Panchromatic scenes (GDA94 and GDA2020)

    6. Shapefile cutlines of statewide mosaic

    The statewide mosaic is provided as a Red Green Blue (RGB) band combination; contrast enhanced lossless 8-bit JPEG2000 file (456gb in size). Individual 100k mapsheet mosaics contain BGR+NIR band combination; unenhanced 16-bit GeoTIFF format tile.

    The NSW mosaic is available from internal DPE APOLLO Image Webserver for DCCEEW employees.

    The 4band 100k mapsheet tiles are available for download from JDAP(pending). The rectified multispectral, pan sharpened and panchromatic scenes are available for download from JDAP (pending)

    Acknowledgement when referencing: includes material © CNES_ (year of production), Distribution Airbus Services/SPOT Image, S.A, France, all rights reserved

    Contact spatial.imagery@environment.nsw.gov.au for further information or to request access to JDAP

    These image products are only available to other NSW Government agencies upon request.

  10. r

    Marine satellite image test collections (AIMS)

    • researchdata.edu.au
    • catalogue.eatlas.org.au
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hammerton, Marc; Lawrey, Eric, Dr (2024). Marine satellite image test collections (AIMS) [Dataset]. http://doi.org/10.26274/ZQ26-A956
    Explore at:
    Dataset updated
    Sep 11, 2024
    Dataset provided by
    Australian Ocean Data Network
    Authors
    Hammerton, Marc; Lawrey, Eric, Dr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2016 - Sep 20, 2021
    Area covered
    Description

    This dataset consists of collections of satellite image composites (Sentinel 2 and Landsat 8) that are created from manually curated image dates for a range of projects. These images are typically prepared for subsequent analysis or testing of analysis algorithms as part of other projects. This dataset acts as a repository of reproducible test sets of images processed from Google Earth Engine using a standardised workflow.

    Details of the algorithms used to produce the imagery are described in the GEE code and code repository available on GitHub (https://github.com/eatlas/World_AIMS_Marine-satellite-imagery).


    Project test image sets:

    As new projects are added to this dataset, their details will be described here:

    - NESP MaC 2.3 Benthic reflection estimation (projects/CS_NESP-MaC-2-3_AIMS_Benth-reflect):
    This collection consists of six Sentinel 2 image composites in the Coral Sea and GBR for the purpose of testing a method of determining benthic reflectance of deep lagoonal areas of coral atolls. These image composites are in GeoTiff format, using 16-bit encoding and LZW compression. These images do not have internal image pyramids to save on space.
    [Status: final and available for download]

    - NESP MaC 2.3 Oceanic Vegetation (projects/CS_NESP-MaC-2-3_AIMS_Oceanic-veg):
    This project is focused on mapping vegetation on the bottom of coral atolls in the Coral Sea. This collection consists of additional images of Ashmore Reef. The lagoonal area of Ashmore has low visibility due to coloured dissolved organic matter, making it very hard to distinguish areas that are covered in vegetation. These images were manually curated to best show the vegetation. While these are the best images in the Sentinel 2 series up to 2023, they are still not very good. Probably 80 - 90% of the lagoonal benthos is not visible.
    [Status: final and available for download]

    - NESP MaC 3.17 Australian reef mapping (projects/AU_NESP-MaC-3-17_AIMS_Reef-mapping):
    This collection of test images was prepared to determine if creating a composite from manually curated image dates (corresponding to images with the clearest water) would produce a better composite than a fully automated composite based on cloud filtering. The automated composites are described in https://doi.org/10.26274/HD2Z-KM55. This test set also includes composites from low tide imagery. The images in this collection are not yet available for download as the collection of images that will be used in the analysis has not been finalised.
    [Status: under development, code is available, but not rendered images]

    - Capricorn Regional Map (projects/CapBunk_AIMS_Regional-map): This collection was developed for making a set of maps for the region to facilitate participatory mapping and reef restoration field work planning.
    [Status: final and available for download]

    - Default (project/default): This collection of manual selected scenes are those that were prepared for the Coral Sea and global areas to test the algorithms used in the developing of the original Google Earth Engine workflow. This can be a good starting point for new test sets. Note that the images described in the default project are not rendered and made available for download to save on storage space.
    [Status: for reference, code is available, but not rendered images]


    Filename conventions:

    The images in this dataset are all named using a naming convention. An example file name is Wld_AIMS_Marine-sat-img_S2_NoSGC_Raw-B1-B4_54LZP.tif. The name is made up of:
    - Dataset name (Wld_AIMS_Marine-sat-img), short for World, Australian Institute of Marine Science, Marine Satellite Imagery.
    - Satellite source: L8 for Landsat 8 or S2 for Sentinel 2.
    - Additional information or purpose: NoSGC - No sun glint correction, R1 best reference imagery set or R2 second reference imagery.
    - Colour and contrast enhancement applied (DeepFalse, TrueColour,Shallow,Depth5m,Depth10m,Depth20m,Raw-B1-B4),
    - Image tile (example: Sentinel 2 54LZP, Landsat 8 091086)


    Limitations:

    Only simple atmospheric correction is applied to land areas and as a result the imagery only approximates the bottom of atmosphere reflectance.

    For the sentinel 2 imagery the sun glint correction algorithm transitions between different correction levels from deep water (B8) to shallow water (B11) and a fixed atmospheric correction for land (bright B8 areas). Slight errors in the tuning of these transitions can result in unnatural tonal steps in the transitions between these areas, particularly in very shallow areas.

    For the Landsat 8 image processing land areas appear as black from the sun glint correction, which doesn't separately mask out the land. The code for the Landsat 8 imagery is less developed than for the Sentinel 2 imagery.

    The depth contours are estimated using satellite derived bathymetry that is subject to errors caused by cloud artefacts, substrate darkness, water clarity, calibration issues and uncorrected tides. They were tuned in the clear waters of the Coral Sea. The depth contours in this dataset are RAW and contain many false positives due to clouds. They should not be used without additional dataset cleanup.



    Change log:

    As changes are made to the dataset, or additional image collections are added to the dataset then those changes will be recorded here.

    2nd Edition, 2024-06-22: CapBunk_AIMS_Regional-map
    1st Edition, 2024-03-18: Initial publication of the dataset, with CS_NESP-MaC-2-3_AIMS_Benth-reflect, CS_NESP-MaC-2-3_AIMS_Oceanic-veg and code for AU_NESP-MaC-3-17_AIMS_Reef-mapping and Default projects.


    Data Format:

    GeoTiff images with LZW compression. Most images do not have internal image pyramids to save on storage space. This makes rendering these images very slow in a desktop GIS. Pyramids should be added to improve performance.

    Data Location:

    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\Wld-AIMS-Marine-sat-img

  11. f

    Power Plant Satellite Imagery Dataset

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kyle Bradbury; Benjamin Brigman; Gouttham Chandrasekar; Leslie Collins; Shamikh Hossain; Marc Jeuland; Timothy Johnson; Boning Li; Trishul Nagenalli (2023). Power Plant Satellite Imagery Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.5307364.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Kyle Bradbury; Benjamin Brigman; Gouttham Chandrasekar; Leslie Collins; Shamikh Hossain; Marc Jeuland; Timothy Johnson; Boning Li; Trishul Nagenalli
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains satellite imagery of 4,454 power plants within the United States. The imagery is provided at two resolutions: 1m (4-band NAIP iamgery with near-infrared) and 30m (Landsat 8, pansharpened to 15m). The NAIP imagery is available for the U.S. and Landsat 8 is available globally. This dataset may be of value for computer vision work, machine learning, as well as energy and environmental analyses.Additionally, annotations of the specific locations of the spatial extent of the power plants in each image is provided. These annotations were collected via the crowdsourcing platform, Amazon Mechanical Turk, using multiple annotators for each image to ensure quality. Links to the sources of the imagery data, the annotation tool, and the team that created the dataset are included in the "References" section.To read more on these data, please refer to the "Power Plant Satellite Imagery Dataset Overview.pdf" file. To download a sample of the data without downloading the entire dataset, download "sample.zip" which includes two sample powerplants and the NAIP, Landsat 8, and binary annotations for each.Note: the NAIP imagery may appear "washed out" when viewed in standard image viewing software because it includes a near-infrared band in addition to the standard RGB data.

  12. WorldView-2 full archive and tasking

    • earth.esa.int
    • fedeo.ceos.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Space Agency, WorldView-2 full archive and tasking [Dataset]. https://earth.esa.int/eogateway/catalog/worldview-2-full-archive-and-tasking
    Explore at:
    Dataset authored and provided by
    European Space Agencyhttp://www.esa.int/
    License

    https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf

    Description

    WorldView-2 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. In particular, WorldView-2 offers archive and tasking panchromatic products up to 0.46 m GSD resolution, and 4-Bands/8-Bands Multispectral products up to 1.84 m GSD resolution. Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard (2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12.000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm 8-bands Standard(2A)/View Ready Standard (OR2A) 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12.000 Orthorectified 30 cm, 40 cm, 50/60 cm 4-Bands being an optional from: 4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1). 8-Bands being an optional from: 8-Band Multispectral (COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2) 8-Band Bundle (PAN, COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2). Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels, improves the visual clarity and allows to obtain an aesthetically refined imagery with precise edges and well reconstructed details. As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.

  13. NOAA Geostationary Operational Environmental Satellites (GOES) 16, 17, 18 &...

    • registry.opendata.aws
    Updated Apr 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA (2025). NOAA Geostationary Operational Environmental Satellites (GOES) 16, 17, 18 & 19 [Dataset]. https://registry.opendata.aws/noaa-goes/
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description



    NEW GOES-19 Data!! On April 4, 2025 at 1500 UTC, the GOES-19 satellite will be declared the Operational GOES-East satellite. All products and services, including NODD, for GOES-East will transition to GOES-19 data at that time. GOES-19 will operate out of the GOES-East location of 75.2°W starting on April 1, 2025 and through the operational transition. Until the transition time and during the final stretch of Post Launch Product Testing (PLPT), GOES-19 products are considered non-operational regardless of their validation maturity level. Shortly following the transition of GOES-19 to GOES-East, all data distribution from GOES-16 will be turned off. GOES-16 will drift to the storage location at 104.7°W. GOES-19 data should begin flowing again on April 4th once this maneuver is complete.

    NEW GOES 16 Reprocess Data!! The reprocessed GOES-16 ABI L1b data mitigates systematic data issues (including data gaps and image artifacts) seen in the Operational products, and improves the stability of both the radiometric and geometric calibration over the course of the entire mission life. These data were produced by recomputing the L1b radiance products from input raw L0 data using improved calibration algorithms and look-up tables, derived from data analysis of the NIST-traceable, on-board sources. In addition, the reprocessed data products contain enhancements to the L1b file format, including limb pixels and pixel timestamps, while maintaining compatibility with the operational products. The datasets currently available span the operational life of GOES-16 ABI, from early 2018 through the end of 2024. The Reprocessed L1b dataset shows improvement over the Operational L1b products but may still contain data gaps or discrepancies. Please provide feedback to Dan Lindsey (dan.lindsey@noaa.gov) and Gary Lin (guoqing.lin-1@nasa.gov). More information can be found in the GOES-R ABI Reprocess User Guide.


    NOTICE: As of January 10th 2023, GOES-18 assumed the GOES-West position and all data files are deemed both operational and provisional, so no ‘preliminary, non-operational’ caveat is needed. GOES-17 is now offline, shifted approximately 105 degree West, where it will be in on-orbit storage. GOES-17 data will no longer flow into the GOES-17 bucket. Operational GOES-West products can be found in the GOES-18 bucket.

    GOES satellites (GOES-16, GOES-17, GOES-18 & GOES-19) provide continuous weather imagery and monitoring of meteorological and space environment data across North America. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. They hover continuously over one position on the surface. The satellites orbit high enough to allow for a full-disc view of the Earth. Because they stay above a fixed spot on the surface, they provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hailstorms, and hurricanes. When these conditions develop, the GOES satellites are able to monitor storm development and track their movements. SUVI products available in both NetCDF and FITS.

  14. d

    CORONA Satellite Photography

    • catalog.data.gov
    • gimi9.com
    • +3more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). CORONA Satellite Photography [Dataset]. https://catalog.data.gov/dataset/corona-satellite-photography
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    DOI/USGS/EROS
    Description

    On February 24, 1995, President Clinton signed an Executive Order, directing the declassification of intelligence imagery acquired by the first generation of United States photo-reconnaissance satellites, including the systems code-named CORONA, ARGON, and LANYARD. More than 860,000 images of the Earth's surface, collected between 1960 and 1972, were declassified with the issuance of this Executive Order. Image collection was driven, in part, by the need to confirm purported developments in then-Soviet strategic missile capabilities. The images also were used to produce maps and charts for the Department of Defense and for other Federal Government mapping programs. In addition to the images, documents and reports (collateral information) are available, pertaining to frame ephemeris data, orbital ephemeris data, and mission performance. Document availability varies by mission; documentation was not produced for unsuccessful missions.

  15. G

    Satellite image mosaics

    • open.canada.ca
    • catalogue.arctic-sdi.org
    csv, ecw, html, pdf
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Satellite image mosaics [Dataset]. https://open.canada.ca/data/en/dataset/cad5639a-437e-4cc2-adaf-62e4fccbbc30
    Explore at:
    html, pdf, ecw, csvAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2011 - Dec 31, 2025
    Description

    The link: Access the data directory is available in the section*Dataset Description Sheets; Additional Information*. Satellite image mosaics are products designed by combining several adjacent tiles of satellite images from the Landsat or Sentinel sensor. The coverage of the mosaics varies according to the years of acquisition, ranging from southern Quebec to all of Quebec. These mosaics are designed to identify land use classes, including forest environments, agricultural environments, wetlands, and environments modified by humans. They also offer an overview of the various natural disturbances that occur on the territory. In the end, they offer easy monitoring of the evolution of forest cover and natural disturbances across territory and time. These mosaics are primarily used to support planning, monitoring, and land use planning. The mosaics have a spatial resolution of between 10 and 30 meters.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  16. Landsat 8 Satellite Imagery Collection 1 - Papua New Guinea

    • png-data.sprep.org
    • pacific-data.sprep.org
    zip
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Geological Survey and National Aeronautics and Space Administration (2022). Landsat 8 Satellite Imagery Collection 1 - Papua New Guinea [Dataset]. https://png-data.sprep.org/dataset/landsat-8-satellite-imagery-collection-1-papua-new-guinea
    Explore at:
    zip(5852463504)Available download formats
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    United States Geological Survey and National Aeronautics and Space Administration
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Papua New Guinea, 142.6732635498 -1.2248822742251, 142.3656463623 -10.093262015308)), 149.3968963623 -0.8733792609738, 140.7396697998 -6.4408592866477, 154.7142791748 -2.6303012095641, 146.4965057373 -1.4884800029826, 156.3842010498 -6.0913976976422, 155.0658416748 -9.3569327887185, 153.3959197998 -2.9375549775994, 155.1976776123 -11.775947798478
    Description

    Since 1972, the joint NASA/ U.S. Geological Survey Landsat series of Earth Observation satellites have continuously acquired images of the Earth’s land surface, providing uninterrupted data to help land managers and policymakers make informed decisions about natural resources and the environment.

    Landsat is a part of the USGS National Land Imaging (NLI) Program. To support analysis of the Landsat long-term data record that began in 1972, the USGS. Landsat data archive was reorganized into a formal tiered data collection structure. This structure ensures all Landsat Level 1 products provide a consistent archive of known data quality to support time-series analysis and data “stacking”, while controlling continuous improvement of the archive, and access to all data as they are acquired. Collection 1 Level 1 processing began in August 2016 and continued until all archived data was processed, completing May 2018. Newly-acquired Landsat 8 and Landsat 7 data continue to be processed into Collection 1 shortly after data is downlinked to USGS EROS.

    Acknowledgement or credit of the USGS as data source should be provided by including a line of text citation such as the example shown below. (Product, Image, Photograph, or Dataset Name) courtesy of the U.S. Geological Survey Example: Landsat-8 image courtesy of the U.S. Geological Survey

  17. e

    Road Network Mapping from Multispectral Satellite Imagery: Leveraging Deep...

    • b2find.eudat.eu
    Updated Apr 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Road Network Mapping from Multispectral Satellite Imagery: Leveraging Deep Learning and Spectral Bands - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/8833b314-e423-5471-b1fb-93bf52a2b446
    Explore at:
    Dataset updated
    Apr 17, 2024
    Description

    Road Network Mapping from Multispectral Satellite Imagery: Leveraging Deep Learning and Spectral Bands Submitted to AGILE24 Abstract Updating road networks in rapidly changing urban landscapes is an important but difficult task, often challenged by the complexity and errors of manual mapping processes. Traditional methods that primarily use RGB satellite imagery struggle with obstacles in the environment and varying road structures, leading to limitations in global data processing. This paper presents an innovative approach that utilizes deep learning and multispectral satellite imagery to improve road network extraction and mapping. By exploring U-Net models with DenseNet backbones and integrating different spectral bands we apply semantic segmentation and extensive post-processing techniques to create georeferenced road networks. We trained two identical models to evaluate the impact of using images created from specially selected multispectral bands rather than conventional RGB images. Our experiments demonstrate the positive impact of using multispectral bands, by improving the results of the metrics Intersection over Union (IoU) by 6.5%, F1 by 5.4%, and the newly proposed relative graph edit distance (relGED) and topology metrics by 2.2% and 2.6% respectively. Data To use the code in this repository, download the required data from SpaceNet Challenge 3 (https://spacenet.ai/spacenet-roads-dataset/) via AWS. The SpaceNet Dataset by SpaceNet Partners is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. SpaceNet was accessed on 05.01.2023 from https://registry.opendata.aws/spacenet Software The analysis and results of this research were achieved with Python and several software packages such as: - tensorflow - networkx - Pillow, cv2 - GDAL, rasterio, shapely - APLS For a fully reproducible environment and software versions refer to 'environment.yml'. All data is licensed under CC BY 4.0, all software files are licensed under the MIT License. Reproducibility To execute the scripts and train your model, first refer to the 'Data' section of this file to download the data from the providers. Apply the preprocessing steps from 'preprocessing.py', but consider that to avoid redundancy, preprocessing steps not included in this repository are the conversion of geojson road data into training images, the reduction of satellite images to an 8-bit format, and their conversion into '.png' files. These steps can be achieved by applying and, if necessary, modifying the APLS library which is publicly available under https://github.com/CosmiQ/apls. Apply preprocessing to both RGB and MS images. To generate the latter execute the 'ms_channel_seperation.py' script while specifying the wanted multispectral channels. Execute the 'train_model.py' script to train your semantic segmentation model, and apply post-processing procedures with 'postprocessing.py'. Generate the metrics results by executing 'evaluation.py'. To save storage space, not all the used data is made available in this repository. Please refer to the 'Data' section of this file to access and download the data from the providers. Exemplary preprocessed training data (100 split images of Las Vegas) is included in the folders './data/tiled512/small_test_sample/ms/' and './data/tiled512/small_test_sample/rgb/'. Post-processed results are provided in the corresponding folders './results/UNetDense_MS_512/' and './results/UNetDense_RGB_512/'. These include the stitched and recombined images, without any post-processing applied to them, as well as the extracted and post-processed graphs as '.pickle' files. This provided data was used to calculate the metrics Intersection over Union (IoU), F1 score, relGED, and topology metric as presented in the paper. The figures included in the paper can be reproduced by saving images created during the preprocessing, training, and post-processing steps. To generate the plots of resulting graphs, refer to the corresponding functions and enable the boolean parameter 'plot'. Bounding boxes seen in the figures were drawn manually and only serve an explanatory purpose. Please be advised that file paths and folder structure have to be adapted manually in the scripts to suit the users folder structure. Be aware of selecting uniform file paths and storing the results in folders named after their model. Furthermore, the code is not meant to be executed from the terminal, running the individual scripts in an IDE is recommended.

  18. a

    LandsatLook Viewer

    • hub.arcgis.com
    • amerigeo.org
    • +5more
    Updated Nov 9, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). LandsatLook Viewer [Dataset]. https://hub.arcgis.com/items/amerigeoss::landsatlook-viewer
    Explore at:
    Dataset updated
    Nov 9, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Welcome to the LandsatLook Viewer!The LandsatLook Viewer is a prototype tool that was developed to allow rapid online viewing and access to the USGS Landsat image archives. This viewer allows you to:Interactively explore the Landsat archive at up to full resolution directly from a common web browserSearch for specific Landsat images based on area of interest, acquisition date, or cloud coverCompare image features and view changes through timeDisplay configurable map information layers in combination with the Landsat imageryCreate a customized image display and export as a simple graphic fileView metadata and download the full-band source imagerySearch by address or place, or zoom to a point, bounding box, or Sentinel-2 Tile or Landsat WRS-1 or WRS-2 Path/RowGenerate and download a video animation of the oldest to newest images displayed in the viewerWe welcome feedback and input for future versions of this Viewer! Please provide your comments or suggestions .About the ImageryThis viewer provides visual and download access to the USGS LandsatLook "Natural Color" imageproduct archive.BackgroundThe Landsat satellites have been collecting multispectral images of Earth from space since 1972. Each image contains multiple bands of spectral information which may require significant user time, system resources, and technical expertise to obtain a visual result. As a result, the use and access to Landsat data has been historically limited to the scientific and technical user communities.The LandsatLook “Natural Color” image product option was created to provide Landsat imagery in a simple user-friendly and viewer-ready format, based on specific bands that have been selected and arranged to simulate natural color. This type of product allows easy visualization of the archived Landsat image without any need for specialized software or technical expertise.LandsatLook ViewerThe LandsatLook Viewer displays the LandsatLook Natural Color image product for all Landsat 1-8 images in the USGS archive and was designed primarily for visualization purposes.The imagery within this Viewer will be of value to anyone who wants to quickly see the full Landsat record for an area, along with major image features or obvious changes to Earth’s surface through time. An area of interest may be extracted and downloaded as a simple graphic file directly through the viewer, and the original full image tile is also available if needed. Any downloaded LandsatLook image product is a georeferenced file and will be compatible within most GIS and Web mapping applications.If the user needs to perform detailed technical analysis, the full bands of Landsat source data may also be accessed through direct links provided on the LandsatLook Viewer.Image ServicesThe imagery that is visible on this LandsatLook Viewer is based on Web-based ArcGIS image services. The underlying REST service endpoints for the LandsatLook imagery are available at https://landsatlook.usgs.gov/arcgis/rest/services/LandsatLook/ImageServer .Useful linksLandsat- Landsat Mission (USGS)- Landsat Science (NASA)LandsatLook- Product Description- USGS Fact Sheet- LandsatLook image services (REST)Landsat Products- Landsat 8 OLI/TIRS- Landsat 7 ETM+- Landsat 4-5 TM- Landsat 1-5 MSS- Landsat Band DesignationsLandsatLook images are full-resolution files derived from Landsat Level-1 data products. The images are compressed and stretched to create an image optimized for image selection and visual interpretation. It is recommended that these images not be used in image analysis.LandsatLook image files are included as options when downloading Landsat scenes from EarthExplorer, GloVis, or the LandsatLook Viewer (See Figure 1).Figure 1. LandsatLook and Level-1 product download optionsLandsatLook Natural Color ImageThe LandsatLook Natural Color image is a .jpg composite of three bands to show a “natural” looking (false color) image. Reflectance values were calculated from the calibrated scaled digital number (DN) image data. The reflectance values were scaled to a 1-255 range using a gamma stretch with a gamma=2.0. This stretch was designed to emphasize vegetation without clipping the extreme values.Landsat 8 OLI = Bands 6,5,4Landsat 7 ETM+ and Landsat 4-5 TM = Bands 5,4,3Landsat 4-5 MSS = Bands 2,4,1Landsat 1-3 MSS = Bands 7,5,4LandsatLook Thermal ImageThe LandsatLook Thermal image is a one-band gray scale .jpg image that displays thermal properties of a Landsat scene. Image brightness temperature values were calculated from the calibrated scaled digital number (DN) image data. An image specific 2 percent clip and a linear stretch to 1-255 were applied to the brightness temperature values.Landsat 8 TIRS = Band 10Landsat 7 ETM+ = Band 61-high gainLandsat 4-5 TM = Band 6Landsat 1-5 MSS = not availableLandsatLook Quality ImageLandsatLook Quality images are 8-bit files generated from the Landsat Level-1 Quality band to provide a quick view of the quality of the pixels within the scene to determine if a particular scene would work best for the user's application. This file includes values representing bit-packed combinations of surface, atmosphere, and sensor conditions that can affect the overall usefulness of a given pixel. Color mapping assignments can be seen in the tables below. For each Landsat scene, LandsatLook Quality images can be downloaded individually in .jpg format, or as a GeoTIFF format file (_QB.TIF) within the LandsatLook Images with Geographic Reference file.Landsat Collection 1 LandsatLook 8-bit Quality Images DesignationsLandsat 8 OLI/TIRSLandsat 7 ETM+, Landsat 4-5 TMLandsat 1-5 MSSColorBitDescriptionBitDescriptionBitDescription 0Designated Fill0Designated Fill0Designated Fill 1Terrain Occlusion1Dropped Pixel1Dropped Pixel 2Radiometric Saturation 2Radiometric Saturation ​2Radiometric Saturation 3Cloud3Cloud3Cloud 4Cloud Shadow4Cloud Shadow 4Unused 5Snow/Ice 5Snow/Ice 5Unused 6Cirrus 6Unused6Unused 7Unused7Unused7UnusedUnusedTable 1. Landsat Collection 1 LandsatLook 8-bit Quality Images Designations LandsatLook Images with Geographic ReferenceThe LandsatLook Image with Geographic Reference is a .zip file bundle that contains the Natural Color, Thermal, and the 8-bit Quality images in georeferenced GeoTiff (.TIF) file format.Figure 2. LandsatLook Natural Color Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 3. LandsatLook Thermal Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 4. LandsatLook Quality Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013 with background color set to dark grey. Additional Information About LandsatLook ImagesMany geographic information systems and image processing software packages easily support .jpg images. To create these files, Landsat data is mapped to a 1-255 range, with the fill area set to zero (if a no-data value is set to zero, the compression algorithm may introduce zero-value artifacts into the data area causing very dark data values to be displayed as no-data).

  19. The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired...

    • zenodo.org
    application/gzip, csv +2
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis (2024). The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired Multi-Temporal Low-Resolution [Dataset]. http://doi.org/10.5281/zenodo.6810792
    Explore at:
    csv, application/gzip, txt, pdfAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis
    Description

    What is this dataset?

    Nearly 10,000 km² of free high-resolution and matched low-resolution satellite imagery of unique locations which ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities.

    Those locations are also enriched with typically under-represented locations in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk.

    Each high-resolution image (1.5 m/pixel) comes with multiple temporally-matched low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites (10 m/pixel).

    We accompany this dataset with a paper, datasheet for datasets and an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox.

    Why make this?

    We hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop the same power of analysis allowed by costly private high-resolution imagery from free public low-resolution Sentinel2 imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution.

    Licences

    • The high-resolution Airbus imagery is distributed, with authorization from Airbus, under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
    • The labels, Sentinel2 imagery, and trained weights are released under Creative Commons with Attribution 4.0 International (CC BY 4.0).
    • The source code (will be shortly released on GitHub) under 3-Clause BSD license.
  20. Gridded Satellite GOES (GridSat-GOES) East and West Full Disk and CONUS...

    • ncei.noaa.gov
    • datadiscoverystudio.org
    • +1more
    Updated Mar 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knapp, Kenneth R. (2017). Gridded Satellite GOES (GridSat-GOES) East and West Full Disk and CONUS Coverage, Version 1 [Dataset]. http://doi.org/10.7289/v5hm56gm
    Explore at:
    Dataset updated
    Mar 31, 2017
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    Knapp, Kenneth R.
    Time period covered
    Oct 1, 1994 - Present
    Area covered
    Description

    The National Centers for Environmental Information in partnership with the Cooperative Institute for Climate and Satellites - North Carolina is reprocessing the GOES (Geostationary Operational Environmental Satellite) Variable (GVAR) period of record: 1994-2015. GridSat GOES represents a reformatted, remapped and calibrated GOES brightness temperatures and reflectance provided in Climate and Forecasting (CF)-compliant netCDF format. This is similar to the current GridSat-B1 CDR, but at a higher spatial and temporal resolution. The data are provided near the original spatial resolution of the infrared channels (4 km) on an equal angle grid (0.04 degrees). Data are mapped to a region spanning the view of GOES East and West (150 deg East to 5 deg East). The data are provided hourly, with all data mapping to the nearest hour. Currently, the data are limited to variables including the observations from the GOES satellites: 5 total channels. However, future efforts are planned to include some basic cloud information (cloud probability, temperature, etc.). Other possible updates include: improved coverage by expanding the GOES inventory (currently, gaps exist in the CLASS archive) and expand to the predecessor to the GOES Imager: GOES VISSR, which would expand coverage back to the 1980s.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NOAA GeoPlatform (2023). Satellite Maps 3D Scene 2023 - for website [Dataset]. https://noaa.hub.arcgis.com/maps/320e766fff7d4b5a8280c86373ee60e0

Satellite Maps 3D Scene 2023 - for website

Explore at:
Dataset updated
Jul 24, 2023
Dataset authored and provided by
NOAA GeoPlatform
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the Maps​What does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why are the North and South Poles dark?The raw satellite data used in these web map apps goes through several processing steps after it has been acquired from space. These steps translate the raw data into geospatial data and imagery projected onto a map. NOAA Satellite Maps uses the Mercator projection to portray the Earth's 3D surface in two dimensions. This Mercator projection does not include data at 80 degrees north and south latitude due to distortion, which is why the poles appear black in these maps. NOAA's polar satellites are a critical resource in acquiring operational data at the poles of the Earth and some of this imagery is available on our website (for example, here ).Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?NOAA Satellite Maps offers an interoperable map service to the public. Use the camera tool to select the area of the map you would like to capture and click ‘download GIS WorldFile.’The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?What am I seeing in the NOAA Satellite Maps 3D Scene?There are four options to choose from, each depicting a different view of the Earth using the latest satellite imagery available. The first three views show the Western Hemisphere and the Pacific Ocean, as captured by the NOAA GOES East (GOES-16) and GOES West (GOES-17) satellites. These images are updated approximately every 15 minutes as we receive data from the satellites in space. The three views show GeoColor, infrared and water vapor. See our other FAQs to learn more about what the imagery layering options depict.The fourth option is a global view, captured by NOAA’s polar-orbiting satellites (NOAA/NASA Suomi NPP and NOAA-20). The polar satellites circle the globe 14 times a day, taking in one complete view of the Earth in daylight every 24 hours. This composite view is what is projected onto the 3D map scene each morning, so you are seeing how the Earth looked from space one day ago.What am I seeing in the Latest 24 Hrs. GOES Constellation Map?In this map you are seeing the past 24 hours (updated approximately every 15 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-17) satellites. In this map you can also view three different ‘layers’. The three views show ‘GeoColor’ ‘infrared’ and ‘water vapor’.(Please note: GOES West imagery is currently only available in GeoColor. The infrared and water vapor imagery will be available in Spring 2019.)This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What am I seeing in the Global Archive Map?In this map, you will see the whole Earth as captured each day by our polar satellites, based on our multi-year archive of data. This data is provided by NOAA’s polar orbiting satellites (NOAA/NASA Suomi NPP from January 2014 to April 19, 2018 and NOAA-20 from April 20, 2018 to today). The polar satellites circle the globe 14 times a day taking in one complete view of the Earth every 24 hours. This complete view is what is projected onto the flat map scene each morning.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in

Search
Clear search
Close search
Google apps
Main menu