CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains >800K CSV files behind the GitTables 1M corpus.
For more information about the GitTables corpus, visit:
- our website for GitTables, or
The UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_18_06_25" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_18_06_25" class="govuk-link">Average price (CSV, 7.1MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_16_04_25" class="govuk-link">Average price by property type (CSV, 15.4KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_18_06_25" class="govuk-link">Sales (CSV, 5.2KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_18_06_25" class="govuk-link">Cash mortgage sales (CSV, 4.9KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_18_06_25" class="govuk-link">First time buyer and former owner occupier (CSV, 4.5KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_18_06_25" class="govuk-link">New build and existing resold property (CSV, 11KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_18_06_25" class="govuk-link">Index (CSV, 5.5KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_18_06_25" class="govuk-link">Index seasonally adjusted (CSV, 196KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_18_06_25" class="govuk-link">Average price seasonally adjusted (CSV, 205KB)
<a rel="external" href="https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Repossession-2025-04.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=repossession&utm_term=9.30_18_06
Free, daily updated MAC prefix and vendor CSV database. Download now for accurate device identification.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.
Download Service provides pre-defined data on relationship between selected territorial elements and units of territorial registration using the ATOM technology. The service is publicly available and free-of-charge (data covers the whole territory of the Czech Republic) and enables downloading of predefined data file containing data for the whole Czech Republic. Files are created during the first day of each month with data valid to the last day of previous month. The whole dataset (7 files) is compressed (ZIP) for downloading.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The benchmarking datasets used for deepBlink. The npz files contain train/valid/test splits inside and can be used directly. The files belong to the following challenges / classes:- ISBI Particle tracking challenge: microtubule, vesicle, receptor- Custom synthetic (based on http://smal.ws): particle- Custom fixed cell: smfish- Custom live cell: suntagThe csv files are to determine which image in the test splits correspond to which original image, SNR, and density.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
We are excited to announce that we have successfully extracted a comprehensive set of alcoholic beverage records from BevMo and compiled them into a CSV file.
This meticulously organized dataset includes key information such as product URLs, IDs, names, SKUs, GTIN14 barcodes, detailed product descriptions, availability status, pricing, currency, images, breadcrumbs, and more.
Our dataset provides an invaluable resource for anyone looking to analyze or utilize detailed BevMo product information.
Download the dataset today and gain access to a wealth of information from one of the leading beverage retailers.
Perfect for market analysis, e-commerce insights, and competitive research.
Alaska DCCED Division of Corporations, Business and Professional Licensing courtesy CSV Download Link Location
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Screencast on how to export field observations with gps coordinates in Excel to a .csv file.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Access the complete Chewy product dataset featuring over 45,000 products with detailed metadata. This comprehensive CSV file includes essential product information, making it ideal for research, data analysis, e-commerce development, and trend monitoring.
What’s Included:
Product Name and Brand
Full Product Descriptions
Category Information
Ingredients Lists
Price and Sale Price Data
Average Customer Ratings
High-Resolution Image URLs
Direct Product Links to Chewy.com
This dataset enables businesses, researchers, and developers to track product trends, compare pricing, analyze brand performance, and integrate high-quality product information into their own systems.
Dataset Details:
Format: CSV
Total Rows: 45,000 products
File Size: Approximately 120MB
Last Updated: April 2025
Download the complete Chewy Product Dataset and gain instant access to a rich source of product insights and metadata for your projects.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains the metadata of the datasets published in 85 Dataverse installations and information about each installation's metadata blocks. It also includes the lists of pre-defined licenses or terms of use that dataset depositors can apply to the datasets they publish in the 58 installations that were running versions of the Dataverse software that include that feature. The data is useful for reporting on the quality of dataset and file-level metadata within and across Dataverse installations and improving understandings about how certain Dataverse features and metadata fields are used. Curators and other researchers can use this dataset to explore how well Dataverse software and the repositories using the software help depositors describe data. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation between August 22 and August 28, 2023 using a Python script kept in a GitHub repo at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_dataset_metadata_of_all_installations.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL in which I was able to create an account and another column named "apikey" listing my accounts' API tokens. The Python script expects the CSV file and the listed API tokens to get metadata and other information from installations that require API tokens. How the files are organized ├── csv_files_with_metadata_from_most_known_dataverse_installations │ ├── author(citation)_2023.08.22-2023.08.28.csv │ ├── contributor(citation)_2023.08.22-2023.08.28.csv │ ├── data_source(citation)_2023.08.22-2023.08.28.csv │ ├── ... │ └── topic_classification(citation)_2023.08.22-2023.08.28.csv ├── dataverse_json_metadata_from_each_known_dataverse_installation │ ├── Abacus_2023.08.27_12.59.59.zip │ ├── dataset_pids_Abacus_2023.08.27_12.59.59.csv │ ├── Dataverse_JSON_metadata_2023.08.27_12.59.59 │ ├── hdl_11272.1_AB2_0AQZNT_v1.0(latest_version).json │ ├── ... │ ├── metadatablocks_v5.6 │ ├── astrophysics_v5.6.json │ ├── biomedical_v5.6.json │ ├── citation_v5.6.json │ ├── ... │ ├── socialscience_v5.6.json │ ├── ACSS_Dataverse_2023.08.26_22.14.04.zip │ ├── ADA_Dataverse_2023.08.27_13.16.20.zip │ ├── Arca_Dados_2023.08.27_13.34.09.zip │ ├── ... │ └── World_Agroforestry_-_Research_Data_Repository_2023.08.27_19.24.15.zip └── dataverse_installations_summary_2023.08.28.csv └── dataset_pids_from_most_known_dataverse_installations_2023.08.csv └── license_options_for_each_dataverse_installation_2023.09.05.csv └── metadatablocks_from_most_known_dataverse_installations_2023.09.05.csv This dataset contains two directories and four CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 20 CSV files that list the values of many of the metadata fields in the citation metadata block and geospatial metadata block of datasets in the 85 Dataverse installations. For example, author(citation)_2023.08.22-2023.08.28.csv contains the "Author" metadata for the latest versions of all published, non-deaccessioned datasets in the 85 installations, where there's a row for author names, affiliations, identifier types and identifiers. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 85 zipped files, one for each of the 85 Dataverse installations whose dataset metadata I was able to download. Each zip file contains a CSV file and two sub-directories: The CSV file contains the persistent IDs and URLs of each published dataset in the Dataverse installation as well as a column to indicate if the Python script was able to download the Dataverse JSON metadata for each dataset. It also includes the alias/identifier and category of the Dataverse collection that the dataset is in. One sub-directory contains a JSON file for each of the installation's published, non-deaccessioned dataset versions. The JSON files contain the metadata in the "Dataverse JSON" metadata schema. The Dataverse JSON export of the latest version of each dataset includes "(latest_version)" in the file name. This should help those who are interested in the metadata of only the latest version of each dataset. The other sub-directory contains information about the metadata models (the "metadata blocks" in JSON files) that the installation was using when the dataset metadata was downloaded. I included them so that they can be used when extracting metadata from the dataset's Dataverse JSON exports. The dataverse_installations_summary_2023.08.28.csv file contains information about each installation, including its name, URL, Dataverse software version, and counts of dataset metadata...
The Facility Registry System (FRS) identifies facilities, sites, or places subject to environmental regulation or of environmental interest to EPA programs or delegated states. Using vigorous verification and data management procedures, FRS integrates facility data from program national systems, state master facility records, tribal partners, and other federal agencies and provides the Agency with a centrally managed, single source of comprehensive and authoritative information on facilities.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
The Waitrose Product Dataset offers a comprehensive and structured collection of grocery items listed on the Waitrose online platform. This dataset includes 25,000+ product records across multiple categories, curated specifically for use in retail analytics, pricing comparison, AI training, and eCommerce integration.
Each record contains detailed attributes such as:
Product title, brand, MPN, and product ID
Price and currency
Availability status
Description, ingredients, and raw nutrition data
Review count and average rating
Breadcrumbs, image links, and more
Delivered in CSV format (ZIP archive), this dataset is ideal for professionals in the FMCG, retail, and grocery tech industries who need structured, crawl-ready data for their projects.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Walmart products sample dataset having 1000+ records in CSV format. Download monthly dataset for walmart data and it having around 100K+ records.
Get 50% discount for all datasets. Link
The primary goal of the Coral Reef Evaluation and Monitoring Project (CREMP) is to measure the status and trends of these communities to assist managers in understanding, protecting, and restoring the living marine resources of the Florida Keys National Marine Sanctuary. Data from the project will be used to determine (1) overall net increase or decrease in stony coral percent cover and stony coral species richness, (2) overall net change in measurable reef community parameters, (3) changes observed in individual reef communities with no overall change on a landscape scale (decreases in one location balanced by increases elsewhere) or changes that are linked to specific regions of the landscape. Each of these potential mechanisms of change will result in different spatial patterns of change. A Sanctuary-wide, rather than a single-location survey, is necessary to detect ecosystem change.
Datasets are available as CSV files. Find out about republishing and making use of the data.
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/UK-HPI-full-file-2016-09.csv" class="govuk-link">UK HPI full file (CSV, 42.5MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2016-09.csv" class="govuk-link">Average price.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2016-09.csv" class="govuk-link">Average price by property type.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2016-09.csv" class="govuk-link">Sales.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2016-09.csv" class="govuk-link">Cash mortgage sales.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2016-09.csv" class="govuk-link">First time buyer and former owner occupied.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2016-09.csv" class="govuk-link">New build and existing resold property.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2016-09.csv" class="govuk-link">Index.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2016-09.csv" class="govuk-link">Index seasonally adjusted.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2016-09.csv" class="govuk-link">Average Price seasonally adjusted.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Repossession-2016-09.csv" class="govuk-link">Repossessions.csv
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the ONS HPI to construct a series back to 1968:
The release calendar shows when the next month’s data will be published.
Create your own reports based on the UK House Price Index data, http://landregistry.data.gov.uk/app/ukhpi" class="govuk-link">use our tool.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Canada Trademarks Dataset
18 Journal of Empirical Legal Studies 908 (2021), prepublication draft available at https://papers.ssrn.com/abstract=3782655, published version available at https://onlinelibrary.wiley.com/share/author/CHG3HC6GTFMMRU8UJFRR?target=10.1111/jels.12303
Dataset Selection and Arrangement (c) 2021 Jeremy Sheff
Python and Stata Scripts (c) 2021 Jeremy Sheff
Contains data licensed by Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, the minister responsible for the administration of the Canadian Intellectual Property Office.
This individual-application-level dataset includes records of all applications for registered trademarks in Canada since approximately 1980, and of many preserved applications and registrations dating back to the beginning of Canada’s trademark registry in 1865, totaling over 1.6 million application records. It includes comprehensive bibliographic and lifecycle data; trademark characteristics; goods and services claims; identification of applicants, attorneys, and other interested parties (including address data); detailed prosecution history event data; and data on application, registration, and use claims in countries other than Canada. The dataset has been constructed from public records made available by the Canadian Intellectual Property Office. Both the dataset and the code used to build and analyze it are presented for public use on open-access terms.
Scripts are licensed for reuse subject to the Creative Commons Attribution License 4.0 (CC-BY-4.0), https://creativecommons.org/licenses/by/4.0/. Data files are licensed for reuse subject to the Creative Commons Attribution License 4.0 (CC-BY-4.0), https://creativecommons.org/licenses/by/4.0/, and also subject to additional conditions imposed by the Canadian Intellectual Property Office (CIPO) as described below.
Terms of Use:
As per the terms of use of CIPO's government data, all users are required to include the above-quoted attribution to CIPO in any reproductions of this dataset. They are further required to cease using any record within the datasets that has been modified by CIPO and for which CIPO has issued a notice on its website in accordance with its Terms and Conditions, and to use the datasets in compliance with applicable laws. These requirements are in addition to the terms of the CC-BY-4.0 license, which require attribution to the author (among other terms). For further information on CIPO’s terms and conditions, see https://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/wr01935.html. For further information on the CC-BY-4.0 license, see https://creativecommons.org/licenses/by/4.0/.
The following attribution statement, if included by users of this dataset, is satisfactory to the author, but the author makes no representations as to whether it may be satisfactory to CIPO:
The Canada Trademarks Dataset is (c) 2021 by Jeremy Sheff and licensed under a CC-BY-4.0 license, subject to additional terms imposed by the Canadian Intellectual Property Office. It contains data licensed by Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, the minister responsible for the administration of the Canadian Intellectual Property Office. For further information, see https://creativecommons.org/licenses/by/4.0/ and https://www.ic.gc.ca/eic/site/cipointernet-internetopic.nsf/eng/wr01935.html.
Details of Repository Contents:
This repository includes a number of .zip archives which expand into folders containing either scripts for construction and analysis of the dataset or data files comprising the dataset itself. These folders are as follows:
If users wish to construct rather than download the datafiles, the first script that they should run is /py/sftp_secure.py. This script will prompt the user to enter their IP Horizons SFTP credentials; these can be obtained by registering with CIPO at https://ised-isde.survey-sondage.ca/f/s.aspx?s=59f3b3a4-2fb5-49a4-b064-645a5e3a752d&lang=EN&ds=SFTP. The script will also prompt the user to identify a target directory for the data downloads. Because the data archives are quite large, users are advised to create a target directory in advance and ensure they have at least 70GB of available storage on the media in which the directory is located.
The sftp_secure.py script will generate a new subfolder in the user’s target directory called /XML_raw. Users should note the full path of this directory, which they will be prompted to provide when running the remaining python scripts. Each of the remaining scripts, the filenames of which begin with “iterparse”, corresponds to one of the data files in the dataset, as indicated in the script’s filename. After running one of these scripts, the user’s target directory should include a /csv subdirectory containing the data file corresponding to the script; after running all the iterparse scripts the user’s /csv directory should be identical to the /csv directory in this repository. Users are invited to modify these scripts as they see fit, subject to the terms of the licenses set forth above.
With respect to the Stata do-files, only one of them is relevant to construction of the dataset itself. This is /do/CA_TM_csv_cleanup.do, which converts the .csv versions of the data files to .dta format, and uses Stata’s labeling functionality to reduce the size of the resulting files while preserving information. The other do-files generate the analyses and graphics presented in the paper describing the dataset (Jeremy N. Sheff, The Canada Trademarks Dataset, 18 J. Empirical Leg. Studies (forthcoming 2021)), available at https://papers.ssrn.com/abstract=3782655). These do-files are also licensed for reuse subject to the terms of the CC-BY-4.0 license, and users are invited to adapt the scripts to their needs.
The python and Stata scripts included in this repository are separately maintained and updated on Github at https://github.com/jnsheff/CanadaTM.
This repository also includes a copy of the current version of CIPO's data dictionary for its historical XML trademarks archive as of the date of construction of this dataset.
The primary goal of the Coral Reef Evaluation and Monitoring Project (CREMP) is to measure the status and trends of these communities to assist managers in understanding, protecting, and restoring the living marine resources of the Florida Keys National Marine Sanctuary. Data from the project will be used to determine (1) overall net increase or decrease in stony coral percent cover and stony coral species richness, (2) overall net change in measurable reef community parameters, (3) changes observed in individual reef communities with no overall change on a landscape scale (decreases in one location balanced by increases elsewhere) or changes that are linked to specific regions of the landscape. Each of these potential mechanisms of change will result in different spatial patterns of change. A Sanctuary-wide, rather than a single-location survey, is necessary to detect ecosystem change.
Build and customise datasets to match your target audience profile, from a database of 200 million global contacts generated in real-time. Get business contact information that's verified by Leadbook's proprietary A.I. powered data technology.
Our Industry data enables you to reach the prospects and maximize your sales and revenue by offering the most impeccable data. Our data covers several industries that provide result-oriented records to help you build and grow business. Our industry-wise data is a vast repository of verified and opt-in contacts.
Executives and Professionals Contact Data to connect with prospects to effectively market B2B products and services. All of our email addresses come with a 97% deliverability or better guarantee.
Simply specify location, industry, employee headcount, job function and/or seniority attributes, then the platform will verify in real-time their business contact information, and you can download the records in a CSV file.
All records include: - Contact name - Job title - Contact email address - Contact location - Contact LinkedIn URL - Organisation name - Organisation website - Organisation type - Organisation headcount - Primary industry
Additional information like organization phone numbers, organization address, business registration number and secondary industries may be provided where available.
Price starts from USD 0.40 per contact rent & USD 0.80 per contact purchase. Bulk discounts apply.
The Facility Registry System (FRS) identifies facilities, sites, or places subject to environmental regulation or of environmental interest to EPA programs or delegated states. Using vigorous verification and data management procedures, FRS integrates facility data from program national systems, state master facility records, tribal partners, and other federal agencies and provides the Agency with a centrally managed, single source of comprehensive and authoritative information on facilities.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains >800K CSV files behind the GitTables 1M corpus.
For more information about the GitTables corpus, visit:
- our website for GitTables, or