Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
jondurbin/truthy-dpo-v0.1 in ChatML format, ready to use in HuggingFace TRL's DPO Trainer. Python code used for conversion: from datasets import load_dataset
dataset = load_dataset("jondurbin/truthy-dpo-v0.1", split="train")
def format(columns): prompt = f"<|im_start|>user {columns['prompt']}<|im_end|> <|im_start|>assistant "
if (columns['system']):
prompt = f"<|im_start|>system
{columns['system']}<|im_end|> {prompt}"
return {
"prompt": prompt… See the full description on the dataset page: https://huggingface.co/datasets/Felladrin/ChatML-truthy-dpo-v0.1.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
How to load the dataset (Usage code): from datasets import load_from_disk
saved_dataset_path = "path/to/dataset/folder" loaded_preference_dataset = load_from_disk(saved_dataset_path) print(f" Successfully loaded dataset from {saved_dataset_path}:") print(loaded_preference_dataset) # Now 'loaded_preference_dataset' can be used directly with DPOTrainer # Example: # dpo_trainer = DPOTrainer(..., train_dataset=loaded_preference_dataset, ...) except Exception as e:… See the full description on the dataset page: https://huggingface.co/datasets/Genesis-AI-Labs/GAIL-gsm8k-preference-small.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
NeuralNovel/Neural-DPO in ChatML format, ready to use in HuggingFace TRL's DPO Trainer. Python code used for conversion: from datasets import load_dataset
dataset = load_dataset("NeuralNovel/Neural-DPO", split="train")
def format(columns): prompt = f"<|im_start|>user {columns['question']}<|im_end|> <|im_start|>assistant "
if (columns['system']):
prompt = f"<|im_start|>system
{columns['system']}<|im_end|> {prompt}"
return {
"prompt": prompt… See the full description on the dataset page: https://huggingface.co/datasets/Felladrin/ChatML-Neural-DPO.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Justin Law's Q&A DPO Dataset
This is a very small dataset meant to provide guidance for further DPO data generation or for direct fine-tuning using Hugging Face's DPO trainer. This initial dataset was generated using OpenAI's GPT4o, along with Justin Law's publicly available resume and cover letter.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
jondurbin/truthy-dpo-v0.1 in ChatML format, ready to use in HuggingFace TRL's DPO Trainer. Python code used for conversion: from datasets import load_dataset
dataset = load_dataset("jondurbin/truthy-dpo-v0.1", split="train")
def format(columns): prompt = f"<|im_start|>user {columns['prompt']}<|im_end|> <|im_start|>assistant "
if (columns['system']):
prompt = f"<|im_start|>system
{columns['system']}<|im_end|> {prompt}"
return {
"prompt": prompt… See the full description on the dataset page: https://huggingface.co/datasets/Felladrin/ChatML-truthy-dpo-v0.1.