Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Input alignment data along with Cardinality and Feature type derived from the input for Sketch A (left) and Sketch B (right).
This web map features a vector basemap of OpenStreetMap (OSM) data created and hosted by Esri. Esri produced this vector tile basemap in ArcGIS Pro from a live replica of OSM data, hosted by Esri, and rendered using a creative cartographic style emulating a blueprint technical drawing. The vector tiles are updated every few weeks with the latest OSM data. This vector basemap is freely available for any user or developer to build into their web map or web mapping apps.OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new vector basemap available available to the OSM, GIS, and Developer communities.
CONABIO provides online cartography through cartographic metadata distributed following the guidelines in the Standards for Digital Geospatial Metadata of FGDC-NBII (Federal Geographic Data Committee – National Biological Information Infrastructure), 1996. The cartographic information is queried through a database that is organized based on themes (biotic, physical and social aspects, regionalization and others), scales, and geographic area. The metadata content is presented as basic information, reports of the information (methodology) and spatial data information. The cartography is available online at no charge in distinct formats like: export file for Arc/Info (.E00) and shape file (ESRI), and DXF (Drawing eXchange Format). Maps is presented in cartographic projections: Lambert Conic Conformal, UTM and geographic coordinates system. GIF format of map images can be obtained as well.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Internal view of the parcel layer. This view contains all the attributes that can be seen by County employees.There are approximately 51,300 real property parcels in Napa County. Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. GIS parcel boundaries are maintained by the Information Technology Services GIS team. Assessor Parcel Maps are created and maintained by the Assessor Division Mapping Section. Each parcel has an Assessor Parcel Number (APN) that is its unique identifier. The APN is the link to various Napa County databases containing information such as owner name, situs address, property value, land use, zoning, flood data, and other related information. Data for this map service is sourced from the Napa County Parcels dataset which is updated nightly with any recent changes made by the mapping team. There may at times be a delay between when a document is recorded and when the new parcel boundary configuration and corresponding information is available in the online GIS parcel viewer.From 1850 to early 1900s assessor staff wrote the name of the property owner and the property value on map pages. They began using larger maps, called “tank maps” because of the large steel cabinet they were kept in, organized by school district (before unification) on which names and values were written. In the 1920s, the assessor kept large books of maps by road district on which names were written. In the 1950s, most county assessors contracted with the State Board of Equalization for board staff to draw standardized 11x17 inch maps following the provisions of Assessor Handbook 215. Maps were originally drawn on linen. By the 1980’s Assessor maps were being drawn on mylar rather than linen. In the early 1990s Napa County transitioned from drawing on mylar to creating maps in AutoCAD. When GIS arrived in Napa County in the mid-1990s, the AutoCAD images were copied over into the GIS parcel layer. Sidwell, an independent consultant, was then contracted by the Assessor’s Office to convert these APN files into the current seamless ArcGIS parcel fabric for the entire County. Beginning with the 2024-2025 assessment roll, the maps are being drawn directly in the parcel fabric layer.Parcels in the GIS parcel fabric are drawn according to the legal description using coordinate geometry (COGO) drawing tools and various reference data such as Public Lands Survey section boundaries and road centerlines. The legal descriptions are not defined by the GIS parcel fabric. Any changes made in the GIS parcel fabric via official records, filed maps, and other source documents are uploaded overnight. There is always at least a 6-month delay between when a document is recorded and when the new parcel configuration and corresponding information is available in the online parcel viewer for search or download.Parcel boundary accuracy can vary significantly, with errors ranging from a few feet to several hundred feet. These distortions are caused by several factors such as: the map projection - the error derived when a spherical coordinate system model is projected into a planar coordinate system using the local projected coordinate system; and the ground to grid conversion - the distortion between ground survey measurements and the virtual grid measurements. The aim of the parcel fabric is to construct a visual interpretation that is adequate for basic geographic understanding. This digital data is intended for illustration and demonstration purposes only and is not considered a legal resource, nor legally authoritative.SFAP & CFAP DISCLAIMER: Per the California Code, RTC 606. some legal parcels may have been combined for assessment purposes (CFAP) or separated for assessment purposes (SFAP) into multiple parcels for a variety of tax assessment reasons. SFAP and CFAP parcels are assigned their own APN number and primarily result from a parcel being split by a tax rate area boundary, due to a recorded land use lease, or by request of the property owner. Assessor parcel (APN) maps reflect when parcels have been separated or combined for assessment purposes, and are one legal entity. The goal of the GIS parcel fabric data is to distinguish the SFAP and CFAP parcel configurations from the legal configurations, to convey the legal parcel configurations. This workflow is in progress. Please be advised that while we endeavor to restore SFAP and CFAP parcels back to their legal configurations in the primary parcel fabric layer, SFAP and CFAP parcels may be distributed throughout the dataset. Parcels that have been restored to their legal configurations, do not reflect the SFAP or CFAP parcel configurations that correspond to the current property tax delineations. We intend for parcel reports and parcel data to capture when a parcel has been separated or combined for assessment purposes, however in some cases, information may not be available in GIS for the SFAP/CFAP status of a parcel configuration shown. For help or questions regarding a parcel’s SFAP/CFAP status, or property survey data, please visit Napa County’s Surveying Services or Property Mapping Information. For more information you can visit our website: When a Parcel is Not a Parcel | Napa County, CA
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A point dataset depicting State Highway Interchange drawing locations. Please direct questions about this dataset to: TransportationGISDataSteward@wsdot.wa.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Percentage of generalization instances identified by the participants and the online tool.
This map presents a vector basemap of OpenStreetMap (OSM) Daylight distribution data hosted by Esri. This version of the map is rendered in a creative cartographic style emulating a blueprint technical drawing. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the OpenStreetMap (Blueprint) map.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
This web map shows the digitized traffic aids drawings dataset contains traffic signs, traffic signals, road markings and other traffic aids data for supporting the development of intelligent transport system, fleet management system and car navigation etc. by the public in Hong Kong. It is a set of data made available by the Transport Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk or more specifically https://portal.csdi.gov.hk/geoportal/?lang=en&datasetId=td_rcd_1638928986276_39755
This displays recent earthquake information from the United States Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) program.In addition to displaying earthquakes by magnitude, this web map also provides earthquake impact details. Impact is measured by population as well as models for economic and fatality loss. For more details, see: PAGER Alerts.Events are updated as frequently as every 5 minutes and are available up to 30 days with the following exceptions:Events with a Magnitude LESS than 3.0 are retained for 3 daysEvents with a Magnitude LESS than 4.5 are retained for 7 daysIn addition to event points, ShakeMaps are also provided. These have been dissolved by Shake Intensity to reduce the Layer Complexity.The specific layers provided in this service have been Time Enabled and include:Events by Magnitude: The event’s seismic magnitude value.Contains PAGER Alert Level: USGS PAGER (Prompt Assessment of Global Earthquakes for Response) system provides an automated impact level assignment that estimates fatality and economic loss.Contains Significance Level: An event’s significance is determined by factors like magnitude, max MMI, ‘felt’ reports, and estimated impact.Shake Intensity: The Instrumental Intensity or Modified Mercalli Intensity (MMI) for available events.For field terms and technical details, see: ComCat DocumentationThis map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to USGS source for official guidance.How to UseThis web map can be used for public information, awareness, and visualization of global earthquakes as a standalone map or embedded in ArcGIS Online apps and dashboards. Map pop-ups contain detailed event information which link individually to each event’s USGS page.All events are derived from the same point data and are classified by an event’s Time (Past 24 hours, Past Week, and Past 3 Months), Magnitude (> 4.0 Richter Magnitude), and PAGER Alert Level.The web app for this map is here.There are two articles that walk through this app in greater detail:Earthquake Mapping Part I: One Symbol from Multiple Fields in ArcadeEarthquake Mapping Part II: The Cartography of Time, Magnitude, and Alert LevelsLight Basemap:Dark BasemapThe shakemaps have been dissolved by a unique value and ordered so that the most intense shaking appears on top. This is achieved by using symbol level drawing.Shake Map
This web map shows the digitized traffic aids drawings dataset contains traffic signs, traffic signals, road markings and other traffic aids data for supporting the development of intelligent transport system, fleet management system and car navigation etc. by the public in Hong Kong. It is a set of data made available by the Transport Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and uploaded to Esri's ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of Hong Kong CSDI Portal at https://portal.csdi.gov.hk or more specifically https://portal.csdi.gov.hk/geoportal/?lang=en&datasetId=td_rcd_1638928986276_39755
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer is a subset of Populated Footprint in 2020 Global Coverage for the Pacific Region. This layer represents an estimate of the footprint of human settlement in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis.This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers. WorldPop modeled this population footprint based on imagery datasets and population data from national statistical organizations and the United Nations. Zooming in to very large scales will often show discrepancies between reality and this or any model. Like all data sources imagery and population counts are subject to many types of error, thus this gridded footprint contains errors of omission and commission. The imagery base maps available in ArcGIS Online were not used in WorldPop's model. Imagery only informs the model of characteristics that indicate a potential for settlement, and cannot intrinsically indicate whether any or how many people live in a building. Also see the Urban Density Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for urban populations.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 14 to NoData (Null) and all other values become 1. The figure of 14 was empirically derived as a good balance between reducing errors of commission, i.e., false-positive cells with lower values, while not introducing errors of omission by eliminating obviously populated cells.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer is a subset of World Populated Footprint in 2020 Tile Image Layer.This layer represents an estimate of the footprint of human settlement in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis.This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers. WorldPop modeled this population footprint based on imagery datasets and population data from national statistical organizations and the United Nations. Zooming in to very large scales will often show discrepancies between reality and this or any model. Like all data sources imagery and population counts are subject to many types of error, thus this gridded footprint contains errors of omission and commission. The imagery base maps available in ArcGIS Online were not used in WorldPop's model. Imagery only informs the model of characteristics that indicate a potential for settlement, and cannot intrinsically indicate whether any or how many people live in a building. Also see the Urban Density Footprint layer, which like this layer, is intended to provide a fast-drawing cartographic context for urban populations.The following processing steps were used to produce this layer in ArcGIS Pro:1. Int tool (Spatial Analyst) to truncate double precision values; all values less than 0.99 become 0.2. Reclassify tool (Spatial Analyst) to set values 0 through 14 to NoData (Null) and all other values become 1. The figure of 14 was empirically derived as a good balance between reducing errors of commission, i.e., false-positive cells with lower values, while not introducing errors of omission by eliminating obviously populated cells.3. Copy Raster tool with Output Coordinate System environment set to Web Mercator, bit depth to 1 bit, and NoData Value to 0.Source:WorldPop Population Density 2000-2020 100m, which is created from WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation. The DOI for the original WorldPop.org total population population data is 10.5258/SOTON/WP00645.
This pipe feature class represents current wastewater information of the mainline sewer in the City of Los Angeles. The Mapping and Land Records Division of the Bureau of Engineering, Department of Public Works provides the most rigorous geographic information of the storm drain system using a geometric network model, to ensure that its storm drains reflect current ground conditions. The conduits and inlets represent the storm drain infrastructure in the City of Los Angeles. Storm drain information is available on NavigateLA, a website hosted by the Bureau of Engineering, Department of Public Works.Associated information about the wastewater Pipe is entered into attributes. Principal attributes include:PIPE_SUBTYPE: pipe subtype is the principal field that describes various types of lines as either Airline, Force Main, Gravity, Siphon, or Special Lateral.For a complete list of attribute values, please refer to (TBA Wastewater data dictionary). Wastewater pipe lines layer was created in geographical information systems (GIS) software to display the location of sewer pipes. The pipe lines layer is a feature class in the LACityWastewaterData.gdb Geodatabase dataset. The layer consists of spatial data as a line feature class and attribute data for the features. The lines are entered manually based on wastewater sewer maps and BOE standard plans, and information about the lines is entered into attributes. The pipe lines are the main sewers constructed within the public right-of-way in the City of Los Angeles. The ends of line segments, of the pipe lines data, are coincident with the wastewater connectivity nodes, cleanout nodes, non-structures, and physical structures points data. Refer to those layers for more information. The wastewater pipe lines are inherited from a sewer spatial database originally created by the City's Wastewater program. The database was known as SIMMS, Sewer Inventory and Maintenance Management System. For the historical information of the wastewater pipe lines layer, refer to the metadata nested under the sections Data Quality Information, Lineage, Process Step section. Pipe information should only be added to the Wastewater Pipes layer if documentation exists, such as a wastewater map approved by the City Engineer. Sewers plans and specifications proposed under private development are reviewed and approved by Bureau of Engineering. The Department of Public Works, Bureau of Engineering's, Brown Book (current as of 2010) outlines standard specifications for public works construction. For more information on sewer materials and structures, look at the Bureau of Engineering Manual, Part F, Sewer Design, F 400 Sewer Materials and Structures section, and a copy can be viewed at http://eng.lacity.org/techdocs/sewer-ma/f400.pdf.List of Fields:STREET: This is the street name and street suffix on which the pipe is located.PIPE_LABEL: This attribute identifies the arc segment between two nodes, which represents the pipe segment. There could be any number of pipes between the same two maintenance holes and at least one. If there is more than one pipe between the same two maintenance holes, then a value other than 'A' is assigned to each pipe, such as the value 'B', 'C', and so on consecutively. Also, when a new pipe is constructed, some old pipes are not removed from the ground and the new pipe is added around the existing pipe. In this case, if the original pipe was assigned an 'A', the new pipe is assigned a 'B'.C_UP_INV: This is the calculated pipe upstream invert elevation value.PIPE_MAT: The value signifies the various materials that define LA City's sewer system. Values: • TCP - Terra Cotta pipe. • CMP - Corrugated metal pipe. • RCP - Reinforced concrete pipe. Used for sewers larger than 42inch, with exceptions. • PCT - Polymer concrete pipe. • CON - Concrete or cement. • DIP - Ductile iron pipe. • ABS - Acrylonitrile butadiene styrene. • STL - Steel. • UNK - Unknown. • ACP - Asbestos cement pipe. • RCL - Reinforced concrete pipe lined. • OTH - Other or unknown. • VCP - Vitrified clay pipe. • TRS - Truss pipe. • CIP - Cast iron pipe. • PVC - Polyvinyl chloride. • BRK - Brick. • RCPL - Lined Reinforced concrete pipe. Used for sewers larger than 42inch, with exceptions. • B/C - Concrete brick pipe. • FRP - Centrifugally cast fiberglass reinforced plastic mortar pipe.DN_INV: This is the downstream invert elevation value.PIPE_WIDTH: This value is the pipe dimension for shapes other than round.C_SLOPE: This is the calculated slope.ENABLED: Internal feature number.DN_STRUCT: This attribute identifies a number at one of two end points of the line segment that represents a sewer pipe. A sewer pipe line has a value for the UP_STRUCT and DN_STRUCT fields. This point is the downstream structure that may be a maintenance hole, pump station, junction, etc. Each of these structures is assigned an identifying number that corresponds to a Sewer Wye data record. The 8 digit value is based on an S-Map index map using a standardized numbering scheme. The S-Map is divided into 16 grids, each numbered sequentially from west to east and north to south. The first three digits represent the S-Map number, the following two digits represent the grid number, and the last three digits represent the structure number within the grid. This field also relates to the (name of table or layer) node attribute table.PIPE_SIZE: This value is the inside pipe diameter in inches.MON_INST: This is the month of the pipe installation.PIPE_ID: The value is a combination of the values in the UP_STRUCT, DN_STRUCT, and PIPE_LABEL fields. This is the 17 digit identifier of each pipe segment and is a key attribute of the pipe line data layer. This field named PIPE_ID relates to the field in the Annotation Pipe feature class and to the field in the Wye line feature class data layers.REMARKS: This attribute contains additional comments regarding the pipe line segment.DN_STA_PLS: This is the tens value of the downstream stationing.EASEMENT: This value denotes whether or not the pipe is within an easement.DN_STA_100: This is the hundreds value of the downstream stationing.PIPE_SHAPE: The value signifies the shape of the pipe cross section. Values: • SE - Semi-Elliptical. • O1 - Semi-Elliptical. • UNK - Unknown. • BM - Burns and McDonald. • S2 - Semi-Elliptical. • EL - Elliptical. • O2 - Semi-Elliptical. • CIR - Circular. • Box - Box (Rectangular).PIPE_STATUS: This attribute contains the pipe status. Values: • U - Unknown. • P - Proposed. • T - Abandoned. • F - As Built. • S - Siphon. • L - Lateral. • A - As Bid. • N - Non-City. • R - Airline.ENG_DIST: LA City Engineering District. The boundaries are displayed in the Engineering Districts index map. Values: • O - Out LA. • V - Valley Engineering District. • W - West LA Engineering District. • H - Harbor Engineering District. • C - Central Engineering District.C_PIPE_LEN: This is the calculated pipe length.OWNER: This value is the agency or municipality that constructed the pipe. Values: • PVT - Private. • CTY - City of LA. • FED - Federal Facilities. • COSA - LA County Sanitation. • OUTLA - Adjoining cities.CRTN_DT: Creation date of the line feature.TRTMNT_LOC: This value is the treatment plant used to treat the pipe wastewater.PCT_ENTRY2: This is the flag determining if the second slope value, in SLOPE2 field, was entered in percent as opposed to a decimal. Values: • Y - The value is expressed as a percent. • N - The value is not expressed as a percent.UP_STA_100: This is the hundreds value of the upstream stationing.DN_MH: The value is the ID of the structure. This point is the structure that may be a maintenance hole, pump station, junction, etc. The field name DN_MH signifies the structure is the point at the downstream end of the pipe line segment. The field DN_MH is a key attribute to relate the pipe lines feature class to the STRUCTURE_ID field in the physical structures feature class.SAN_PIPE_IDUSER_ID: The name of the user carrying out the edits of the pipe data.WYE_MAT: This is the pipe material as shown on the wye card.WYE_DIAM: This is the pipe diameter as shown on the wye card.SLOPE2: This is the second slope value used for pipe segments with a vertical curve.EST_YR_LEV: This value is the year installed level.EST_MATL: This is the flag determining if the pipe material was estimated.LINER_DATE: This value is the year that the pipe was re-lined.LAST_UPDATE: Date of last update of the line feature.SHAPE: Feature geometry.EST_YEAR: This is the flag indicating if the year if installation was estimated.EST_UPINV: This is the flag determining if the pipe upstream elevation value was estimated.WYE_UPDATE: This value indicates whether the wye card was updated.PCT_ENTRY: This is the flag determining if the slope was entered in percent as opposed to a decimal. Values: • N - The value is not expressed as a percent. • Y - The value is expressed as a percent.PROF: This is the profile drawing number.PLAN1: This is the improvement plan drawing number.PLAN2: This is the supplementary improvement plan drawing number.EST_DNINV: This is the flag determining if the pipe downstream elevation value was estimated.UP_STRUCT: This attribute identifies a number at one of two end points of the line segment that represents a sewer pipe. A sewer pipe line has a value for the UP_STRUCT and DN_STRUCT fields. This point is the upstream structure that may be a maintenance hole, pump station, junction, etc. Each of these structures is assigned an identifying number that corresponds to a Sewer Wye data record. The 8 digit value is based on an S-Map index map
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Define - Use the Area of Interest tab to define your area of interest. You can navigate to an area by zooming in on a map or by selecting from a Quick Navigation choice list. After you find the area, define it as the Area of Interest (AOI) by drawing a box around it using a map tool. You must complete this step before you can go on to the next two stepsView - Click the Soil Map tab to view or print a map of the soils in your area and view a description of the soils, or click the Soil Data Explorer tab to access soil data for your area and determine the suitability of the soils for a particular use. The items you want saved in a report can be added to your shopping cart.Explore - Click the Soil Data Explorer tab to access soil data for your area and determine the suitability of the soils for a particular use. The items you want saved in a report can be added to your shopping cart.Check Out - Use the Shopping Cart tab to get your custom report immediately or download it later.Web Soil Survey Web Soil Survey links with additional documents Other Documents to Reference:Web Soil Survey BrochureWeb Soil Survey Brochure in SpanishGetting Started in Web Soil SurveyUsing Web Soil Survey in 4 Basic StepsHow to Use Web Soil Survey 3.0Guide on downloading SSURGO from Web Soil SurveyWeb Soil Survey Tips and ShortcutsWeb Soil Survey Known Problems and WorkaroundsWeb Soil Survey Frequently Asked QuestionsWeb Soil Survey Help OnlineWeb Soil Survey Accessibility FeaturesDefining an AOI for Web Soil Survey on a Mobile DeviceWeb Soil Survey Adding a Multi-part AOI featureUsing Google Earth Pro to create multiple AOIs for Web Soil SurveyWeb Soil Survey Version Release History DocumentsWeb Soil Survey Guide to Maps, Reports, and TablesWeb Soil Survey - Soil Data Explorer TabUsing Web Soil Survey YouTube Videos
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Input alignment data along with Cardinality and Feature type derived from the input for Sketch A (left) and Sketch B (right).