26 datasets found
  1. N

    Income Distribution by Quintile: Mean Household Income in Fall River, WI

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Fall River, WI [Dataset]. https://www.neilsberg.com/research/datasets/948dd7e0-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Fall River, Wisconsin
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Fall River, WI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 23,283, while the mean income for the highest quintile (20% of households with the highest income) is 181,018. This indicates that the top earners earn 8 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 246,905, which is 136.40% higher compared to the highest quintile, and 1060.45% higher compared to the lowest quintile.

    Mean household income by quintiles in Fall River, WI (in 2022 inflation-adjusted dollars))

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Fall River median household income. You can refer the same here

  2. N

    Income Distribution by Quintile: Mean Household Income in Fall River, MA //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Fall River, MA // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4821ba35-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Massachusetts, Fall River
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Fall River, MA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 9,913, while the mean income for the highest quintile (20% of households with the highest income) is 178,529. This indicates that the top earners earn 18 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 273,935, which is 153.44% higher compared to the highest quintile, and 2763.39% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Fall River median household income. You can refer the same here

  3. w

    R2 & NE: Block Group Level 2006-2010 ACS Population Summary

    • data.wu.ac.at
    tgrshp (compressed)
    Updated Jan 13, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2018). R2 & NE: Block Group Level 2006-2010 ACS Population Summary [Dataset]. https://data.wu.ac.at/odso/data_gov/MDllYzM1ZDktNTk5MS00MTk5LThkYzYtNTU3MzRiNWJkMjU5
    Explore at:
    tgrshp (compressed)Available download formats
    Dataset updated
    Jan 13, 2018
    Dataset provided by
    U.S. Environmental Protection Agency
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    03894b011bd08c1bbe3251854fa7524ce8fd568a
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are defined before tabulation block delineation and numbering, but are clusters of blocks within the same census tract that have the same first digit of their 4-digit census block number from the same decennial census. For example, Census 2000 tabulation blocks 3001, 3002, 3003,.., 3999 within Census 2000 tract 1210.02 are also within BG 3 within that census tract. Census 2000 BGs generally contained between 600 and 3,000 people, with an optimum size of 1,500 people. Most BGs were delineated by local participants in the Census Bureau's Participant Statistical Areas Program (PSAP). The Census Bureau delineated BGs only where the PSAP participant declined to delineate BGs or where the Census Bureau could not identify any local PSAP participant. A BG usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within census tract. Within the standard census geographic hierarchy, BGs never cross county or census tract boundaries, but may cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. BGs have a valid code range of 0 through 9. BGs coded 0 were intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. For Census 2000, rather than extending a census tract boundary into the Great Lakes or out to the U.S. nautical three-mile limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore. The Census Bureau assigned a default census tract number of 0 and BG of 0 to these offshore, water-only areas not included in regularly numbered census tract areas.

    This table contains data on race, age, sex, and marital status from the American Community Survey 2006-2010 database for block groups. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).

    The name for table 'ACS10POPBGMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.

  4. p

    Population and Housing Census 2010 - Kiribati

    • microdata.pacificdata.org
    Updated May 10, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiribati National Statistics Office (2019). Population and Housing Census 2010 - Kiribati [Dataset]. https://microdata.pacificdata.org/index.php/catalog/221
    Explore at:
    Dataset updated
    May 10, 2019
    Dataset authored and provided by
    Kiribati National Statistics Office
    Time period covered
    2010
    Area covered
    Kiribati
    Description

    Abstract

    The National Statistics Office (NSO) strives and continues to support government by providing socio-economic statistics for monitoring and evaluation purposes through population censuses. These socio-economic statistics are also made available to other users such as the businesses, the churches, regional and international organizations. One of the main sources of demographic and social-economic statistics in Kiribati is the population and housing census. Kiribati has been carrying out population and housing censuses in a "modern sense" at intervals of about five years since 1985. This 2010 Census is the first census to use the GPS to plot the positions of the households.

    The population census is conducted under the Population Census Ordinance CAP 8.

    A population census is a fairly large undertaking involving lots of people and a significant budget. It requires elaborate organization and preparation and this is why it is necessary to start the preparations well in advance of the actual enumeration date, say two years or at least a year. Unfortunately, preparations for this 2010 census started less than a year before the enumeration took place. This is basically because of the late approval of funds and the uncertainty as whether the census would go ahead or not.

    Geographic coverage

    National coverage: meaning the whole population, all households and institutions in all the islands in the Gilbert group, the Line islands and the Phoenix group were covered.

    Analysis unit

    Individuals and Households.

    Universe

    The population census enumeration in Kiribati is based on a de-facto basis meaning that people residing only in Kiribati at the time of the census will be counted or enumerated-i.e. those temporary overseas will be excluded.

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire, published in English, is divided into 2 categories as such: -Household and Housing form: Household characteristics, livestocks, capital goods owned, energy, fishing involvement, sanitation, waste management, cash inflow. -Persons form: Individual characteristics, education, literacy, physical activity, fertility, narcotic use, economic activity.

    Questionnaire design process: Although the population census questions remain basically the same from census to census there is always a need to review the questionnaire before each census in light of recent developments and changes, and in light of complaints or problems noted in past censuses. For instance, the question on the "internet use" was never asked in the previous censuses because there was no internet or the internet use was very limited in those times, but now the internet is one of the standard household questions because many people are using it. Sometimes it may be necessary to drop off some questions that people are no longer interested in, again to give an example, in the 1990 population 14 census there was a question on the number of ducks and goats, because the agriculture division had brought in some goats in the 1980s to see whether they could be reared here-as it turned out, the goats were becoming more of a nuisance rather than worthwhile household assets, and they were eventually disposed off. The ducks are also on the decline and so the census questionnaires in recent censuses do not incorporate them anymore. Sometimes the questions are reviewed to ensure that the enumerators and the respondents fully understand them. Usually there is a committee or task force set up to review and finalize the questionnaires. For the 2010 population census project a workshop to review the questionnaire was conducted in August 2010 for three days. The participants include officials from different government ministries and representatives of non-government bodies. The 2005 census questionnaire was used as the initial template and as the basis of the discussion.

    To access the full Questionnaire please refer to the external resources of this documentation.

    Cleaning operations

    The census commissioner went to SPC, in Noumea, in August 2011 to clean up the datafile, do some initial census tabulations, and start some analysis. Data processing was done using CSPro software.

    Response rate

    not applicable

  5. A

    R2 & NE: Block Group Level 2006-2010 ACS Employment Summary

    • data.amerigeoss.org
    tgrshp (compressed)
    Updated Jul 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). R2 & NE: Block Group Level 2006-2010 ACS Employment Summary [Dataset]. https://data.amerigeoss.org/pt_PT/dataset/r2-ne-block-group-level-2006-2010-acs-employment-summary
    Explore at:
    tgrshp (compressed)Available download formats
    Dataset updated
    Jul 31, 2019
    Dataset provided by
    United States[old]
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are defined before tabulation block delineation and numbering, but are clusters of blocks within the same census tract that have the same first digit of their 4-digit census block number from the same decennial census. For example, Census 2000 tabulation blocks 3001, 3002, 3003,.., 3999 within Census 2000 tract 1210.02 are also within BG 3 within that census tract. Census 2000 BGs generally contained between 600 and 3,000 people, with an optimum size of 1,500 people. Most BGs were delineated by local participants in the Census Bureau's Participant Statistical Areas Program (PSAP). The Census Bureau delineated BGs only where the PSAP participant declined to delineate BGs or where the Census Bureau could not identify any local PSAP participant. A BG usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within census tract. Within the standard census geographic hierarchy, BGs never cross county or census tract boundaries, but may cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. BGs have a valid code range of 0 through 9. BGs coded 0 were intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. For Census 2000, rather than extending a census tract boundary into the Great Lakes or out to the U.S. nautical three-mile limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore. The Census Bureau assigned a default census tract number of 0 and BG of 0 to these offshore, water-only areas not included in regularly numbered census tract areas.

    This table contains data on employment and participation of mothers in the labor force from the American Community Survey 2006-2010 database for block groups. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).

    The name for table 'ACS10EMPBGMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.

  6. A

    R2 & NE: Block Group Level 2006-2010 ACS Income Summary

    • data.amerigeoss.org
    • datadiscoverystudio.org
    • +1more
    tgrshp (compressed)
    Updated Jul 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). R2 & NE: Block Group Level 2006-2010 ACS Income Summary [Dataset]. https://data.amerigeoss.org/id/dataset/r2-ne-block-group-level-2006-2010-acs-income-summary3db91
    Explore at:
    tgrshp (compressed)Available download formats
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    United States
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block Groups (BGs) are defined before tabulation block delineation and numbering, but are clusters of blocks within the same census tract that have the same first digit of their 4-digit census block number from the same decennial census. For example, Census 2000 tabulation blocks 3001, 3002, 3003,.., 3999 within Census 2000 tract 1210.02 are also within BG 3 within that census tract. Census 2000 BGs generally contained between 600 and 3,000 people, with an optimum size of 1,500 people. Most BGs were delineated by local participants in the Census Bureau's Participant Statistical Areas Program (PSAP). The Census Bureau delineated BGs only where the PSAP participant declined to delineate BGs or where the Census Bureau could not identify any local PSAP participant. A BG usually covers a contiguous area. Each census tract contains at least one BG, and BGs are uniquely numbered within census tract. Within the standard census geographic hierarchy, BGs never cross county or census tract boundaries, but may cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. BGs have a valid code range of 0 through 9. BGs coded 0 were intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. For Census 2000, rather than extending a census tract boundary into the Great Lakes or out to the U.S. nautical three-mile limit, the Census Bureau delineated some census tract boundaries along the shoreline or just offshore. The Census Bureau assigned a default census tract number of 0 and BG of 0 to these offshore, water-only areas not included in regularly numbered census tract areas.

    This table contains data on household income and poverty status from the American Community Survey 2006-2010 database for block groups. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).

    The name for table 'ACS10INCBGMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.

  7. w

    R2 & NE: Tract Level 2006-2010 ACS Population Summary

    • data.wu.ac.at
    • datadiscoverystudio.org
    tgrshp (compressed)
    Updated Jan 13, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2018). R2 & NE: Tract Level 2006-2010 ACS Population Summary [Dataset]. https://data.wu.ac.at/odso/data_gov/Yjk4NjA3N2EtNDM1My00NjFkLTlhOWEtYmEyOTAzM2I3YWVi
    Explore at:
    tgrshp (compressed)Available download formats
    Dataset updated
    Jan 13, 2018
    Dataset provided by
    U.S. Environmental Protection Agency
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    ad4bfb9d41cff80fae3adba549976db2a10b8b44
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

    This table contains data on race, age, sex, and marital status from the American Community Survey 2006-2010 database for tracts. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).

    The name for table 'ACS10POPTRMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.

  8. d

    Annual California Sea Otter Census—1985-2014 Spring Census Summary

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Annual California Sea Otter Census—1985-2014 Spring Census Summary [Dataset]. https://catalog.data.gov/dataset/annual-california-sea-otter-census1985-2014-spring-census-summary
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This dataset represents an archived record of annual California sea otter surveys from 1985-2014. Survey procedures involve counting animals during the "spring survey" -- generally beginning in late April or early May and usually ending in late May early June but may extend into early July, depending on weather conditions. Annual surveys are organized by survey year and within each year, three shapefiles are included: census summary of southern sea otter, extra limit counts of southern sea otter, and range extent of southern sea otter. The surveys, conducted cooperatively by scientists of the U.S. Geological Survey, California Department of Fish and Wildlife, U.S. Fish and Wildlife Service and Monterey Bay Aquarium with the help of experienced volunteers, cover about 375 miles of California coast, from Half Moon Bay south to Santa Barbara. The information gathered may be used by federal and state wildlife agencies in making decisions about the management of this threatened marine mammal. These data, in conjunction with findings from several more in-depth studies, may also provide the necessary information to assess female reproductive rates and changes in reproductive success of the California sea otter population through time. For more information on annual California sea otter surveys, including most current surveys and associated data and corresponding USGS Data Series reports, go to: https://www.sciencebase.gov/catalog/item/5601b6dae4b03bc34f5445ec The GIS shapefile "Census summary of southern sea otter" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring range-wide census. This census has been undertaken each year using consistent methodology involving both ground-based and aerial-based counts. This range-wide census provides the primary basis for gauging population trends by State and Federal management agencies. This shapefile includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California. Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al. 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. The GIS shapefile "Extra limit counts of southern sea otters" is a point layer representing the locations of sea otter sightings that fall outside the officially recognized range of the southern sea otter in mainland California. These data were collected during the spring range-wide census. Sea otter distribution in California (the mainland range) is considered to comprise a band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits as defined above. However, a few individual sea otters (almost always males) can frequently be found outside this officially recognized range, and these "extra-limital" animals are also counted during the census. The GIS shapefile "Range extent of southern sea otters" is a simple polyline representing the geographic distribution of the southern sea otter in mainland California, based on data collected during the spring range-wide census. The spring 2011 survey was incomplete due to weather conditions and there were no “extra-limital” sightings of otters during the spring 1992 survey, hence no data or shapefile for “Extra limit counts 1992.” For ease of access, an additional CSV file of the census summary from 1985-2014 is provided: "AnnualCaliforniaSeaOtter_Census_summary_1985_2014.csv" References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012

  9. United States US: Population: Growth

    • ceicdata.com
    Updated Nov 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States US: Population: Growth [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-population-growth
    Explore at:
    Dataset updated
    Nov 27, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Population: Growth data was reported at 0.713 % in 2017. This records a decrease from the previous number of 0.734 % for 2016. United States US: Population: Growth data is updated yearly, averaging 0.979 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1.702 % in 1960 and a record low of 0.711 % in 2013. United States US: Population: Growth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; Derived from total population. Population source: (1) United Nations Population Division. World Population Prospects: 2017 Revision, (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  10. w

    R2 & NE: Tract Level 2006-2010 ACS Education Summary

    • data.wu.ac.at
    • datadiscoverystudio.org
    tgrshp (compressed)
    Updated Jan 9, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2018). R2 & NE: Tract Level 2006-2010 ACS Education Summary [Dataset]. https://data.wu.ac.at/schema/data_gov/MzNiOTZjYmEtZTcwYS00MGQ1LWEwYjUtNWJiNmVkNTNkMWQ0
    Explore at:
    tgrshp (compressed)Available download formats
    Dataset updated
    Jan 9, 2018
    Dataset provided by
    U.S. Environmental Protection Agency
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    eff41258adb77775809aa7b5eb4d779d07ba75dc
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

    This table contains data on educational attainment from the American Community Survey 2006-2010 database for states. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).

    The name for table 'ACS10EDUTRMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.

  11. w

    R2 & NE: State Level 2006-2010 ACS Employment Summary

    • data.wu.ac.at
    • cloud.csiss.gmu.edu
    tgrshp (compressed)
    Updated Jan 13, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency (2018). R2 & NE: State Level 2006-2010 ACS Employment Summary [Dataset]. https://data.wu.ac.at/schema/data_gov/NmYyYjI5ZjktYzU1Yi00ZWY2LWEyOWUtOGExZDQyM2JhNWVh
    Explore at:
    tgrshp (compressed)Available download formats
    Dataset updated
    Jan 13, 2018
    Dataset provided by
    U.S. Environmental Protection Agency
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    6675f52edb11b6e0435e7f0d43c5d344400f5f8d
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. States and equivalent entities are the primary governmental divisions of the United States. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.

    This table contains data on employment, commuting time and method, and participation of mothers in the labor force from the American Community Survey 2006-2010 database for states. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).

    The name for table 'ACS10EMPSTMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.

  12. W

    R2 & NE: Tract Level 2006-2010 ACS Languages Spoken Summary

    • cloud.csiss.gmu.edu
    Updated Mar 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2021). R2 & NE: Tract Level 2006-2010 ACS Languages Spoken Summary [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/r2-ne-tract-level-2006-2010-acs-languages-spoken-summary
    Explore at:
    Dataset updated
    Mar 5, 2021
    Dataset provided by
    United States
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

    This table contains data on individual languages spoken from the American Community Survey 2006-2010 database for tracts. The American Community Survey (ACS) is a household survey conducted by the U.S. Census Bureau that currently has an annual sample size of about 3.5 million addresses. ACS estimates provides communities with the current information they need to plan investments and services. Information from the survey generates estimates that help determine how more than $400 billion in federal and state funds are distributed annually. Each year the survey produces data that cover the periods of 1-year, 3-year, and 5-year estimates for geographic areas in the United States and Puerto Rico, ranging from neighborhoods to Congressional districts to the entire nation. This table also has a companion table (Same table name with MOE Suffix) with the margin of error (MOE) values for each estimated element. MOE is expressed as a measure value for each estimated element. So a value of 25 and an MOE of 5 means 25 +/- 5 (or statistical certainty between 20 and 30). There are also special cases of MOE. An MOE of -1 means the associated estimates do not have a measured error. An MOE of 0 means that error calculation is not appropriate for the associated value. An MOE of 109 is set whenever an estimate value is 0. The MOEs of aggregated elements and percentages must be calculated. This process means using standard error calculations as described in "American Community Survey Multiyear Accuracy of the Data (3-year 2008-2010 and 5-year 2006-2010)". Also, following Census guidelines, aggregated MOEs do not use more than 1 0-element MOE (109) to prevent over estimation of the error. Due to the complexity of the calculations, some percentage MOEs cannot be calculated (these are set to null in the summary-level MOE tables).

    The name for table 'ACS10LSPTRMOE' was added as a prefix to all field names imported from that table. Be sure to turn off 'Show Field Aliases' to see complete field names in the Attribute Table of this feature layer. This can be done in the 'Table Options' drop-down menu in the Attribute Table or with key sequence '[CTRL]+[SHIFT]+N'. Due to database restrictions, the prefix may have been abbreviated if the field name exceded the maximum allowed characters.

  13. w

    Annual California Sea Otter Census: 2017 Census Summary Shapefile

    • data.wu.ac.at
    • data.usgs.gov
    • +3more
    digital data
    Updated Dec 12, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2017). Annual California Sea Otter Census: 2017 Census Summary Shapefile [Dataset]. https://data.wu.ac.at/schema/data_gov/NTk2ODM2ZWUtNGNmNS00Y2Q0LWJkM2EtYmFhZWJmOGI2MTJi
    Explore at:
    digital dataAvailable download formats
    Dataset updated
    Dec 12, 2017
    Dataset provided by
    Department of the Interior
    Area covered
    4a8830d5adf737236907f38cf1ce0c85e137d698
    Description

    The GIS shapefile "Census summary of southern sea otter 2017" provides a standardized tool for examining spatial patterns in abundance and demographic trends of the southern sea otter (Enhydra lutris nereis), based on data collected during the spring 2017 range-wide census. The USGS range-wide sea otter census has been undertaken twice a year since 1982, once in May and once in October, using consistent methodology involving both ground-based and aerial-based counts. The spring census is considered more accurate than the fall count, and provides the primary basis for gauging population trends by State and Federal management agencies. This Shape file includes a series of summary statistics derived from the raw census data, including sea otter density (otters per square km of habitat), linear density (otters per km of coastline), relative pup abundance (ratio of pups to independent animals) and 5-year population trend (calculated as exponential rate of change). All statistics are calculated and plotted for small sections of habitat in order to illustrate local variation in these statistics across the entire mainland distribution of sea otters in California (as of 2017). Sea otter habitat is considered to extend offshore from the mean low tide line and out to the 60m isobath: this depth range includes over 99% of sea otter feeding dives, based on dive-depth data from radio tagged sea otters (Tinker et al 2006, 2007). Sea otter distribution in California (the mainland range) is considered to comprise this band of potential habitat stretching along the coast of California, and bounded to the north and south by range limits defined as "the points farthest from the range center at which 5 or more otters are counted within a 10km contiguous stretch of coastline (as measured along the 10m bathymetric contour) during the two most recent spring censuses, or at which these same criteria were met in the previous year". The polygon corresponding to the range definition was then sub-divided into onshore/offshore strips roughly 500 meters in width. The boundaries between these strips correspond to ATOS (As-The-Otter-Swims) points, which are arbitrary locations established approximately every 500 meters along a smoothed 5 fathom bathymetric contour (line) offshore of the State of California. References: Tinker, M. T., Doak, D. F., Estes, J. A., Hatfield, B. B., Staedler, M. M. and Bodkin, J. L. (2006), INCORPORATING DIVERSE DATA AND REALISTIC COMPLEXITY INTO DEMOGRAPHIC ESTIMATION PROCEDURES FOR SEA OTTERS. Ecological Applications, 16: 2293–2312, https://doi.org/10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2 Tinker, M. T. , D. P. Costa , J. A. Estes , and N. Wieringa . 2007. Individual dietary specialization and dive behaviour in the California sea otter: using archival time–depth data to detect alternative foraging strategies. Deep Sea Research II 54: 330–342, https://doi.org/10.1016/j.dsr2.2006.11.012

  14. w

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Strategic Marketing & Media Research Institute Group (SMMRI) (2020). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://microdata.worldbank.org/index.php/catalog/81
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset provided by
    Ministry of Social Affairs
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Time period covered
    2003
    Area covered
    Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

  15. c

    Commuter Mode Share

    • data.ccrpc.org
    csv
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Commuter Mode Share [Dataset]. https://data.ccrpc.org/dataset/commuter-mode-share
    Explore at:
    csv(1639)Available download formats
    Dataset updated
    Oct 2, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    This commuter mode share data shows the estimated percentages of commuters in Champaign County who traveled to work using each of the following modes: drove alone in an automobile; carpooled; took public transportation; walked; biked; went by motorcycle, taxi, or other means; and worked at home. Commuter mode share data can illustrate the use of and demand for transit services and active transportation facilities, as well as for automobile-focused transportation projects.

    Driving alone in an automobile is by far the most prevalent means of getting to work in Champaign County, accounting for over 69 percent of all work trips in 2023. This is the same rate as 2019, and the first increase since 2017, both years being before the COVID-19 pandemic began.

    The percentage of workers who commuted by all other means to a workplace outside the home also decreased from 2019 to 2021, most of these modes reaching a record low since this data first started being tracked in 2005. The percentage of people carpooling to work in 2023 was lower than every year except 2016 since this data first started being tracked in 2005. The percentage of people walking to work increased from 2022 to 2023, but this increase is not statistically significant.

    Meanwhile, the percentage of people in Champaign County who worked at home more than quadrupled from 2019 to 2021, reaching a record high over 18 percent. It is a safe assumption that this can be attributed to the increase of employers allowing employees to work at home when the COVID-19 pandemic began in 2020.

    The work from home figure decreased to 11.2 percent in 2023, but which is the first statistically significant decrease since the pandemic began. However, this figure is still about 2.5 times higher than 2019, even with the COVID-19 emergency ending in 2023.

    Commuter mode share data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Means of Transportation to Work.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (18 September 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (10 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (14 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using data.census.gov; (26 March 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S0801; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  16. w

    Demographic and Health Survey 2019 - Sierra Leone

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Sierra Leone (2021). Demographic and Health Survey 2019 - Sierra Leone [Dataset]. https://microdata.worldbank.org/index.php/catalog/3826
    Explore at:
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    Statistics Sierra Leone
    Time period covered
    2019
    Area covered
    Sierra Leone
    Description

    Abstract

    The 2019 Sierra Leone Demographic and Health Survey (2019 SLDHS) is a nationwide survey with a nationally representative sample of approximately 13,872 selected households. All women age 15-49 who are usual household members or who spent the night before the survey in the selected households were eligible for individual interviews.

    The primary objective of the 2019 SLDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the survey collected information on fertility, awareness and use of family planning methods, breastfeeding practices, nutritional status of women and children, maternal and child health, adult and childhood mortality, women’s empowerment, domestic violence, female genital cutting, prevalence and awareness and behaviour regarding HIV/AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking.

    The information collected through the 2019 SLDHS is intended to assist policymakers and programme managers in evaluating and designing programmes and strategies for improving the health of the country’s population.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-59

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, all men age 15-59, and all children aged 0-5 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling frame used for the 2019 SLDHS is the Population and Housing Census of the Republic of Sierra Leone, which was conducted in 2015 by Statistics Sierra Leone. Administratively, Sierra Leone is divided into provinces. Each province is subdivided into districts, each district is further divided into chiefdoms/census wards, and each chiefdom/census ward is divided into sections. During the 2015 Population and Housing Census, each locality was subdivided into convenient areas called census enumeration areas (EAs). The primary sampling unit (PSU), referred to as a cluster for the 2019 SLDHS, is defined based on EAs from the 2015 EA census frame. The 2015 Population and Housing Census provided the list of EAs that served as a foundation to estimate the number of households and distinguish EAs as urban or rural for the survey sample frame.

    The sample for the 2019 SLDHS was a stratified sample selected in two stages. Stratification was achieved by separating each district into urban and rural areas. In total, 31 sampling strata were created. Samples were selected independently in every stratum via a two-stage selection process. Implicit stratifications were achieved at each of the lower administrative levels by sorting the sampling frame before sample selection according to administrative order and by using probability-proportional-to-size selection during the first sampling stage.

    In the first stage, 578 EAs were selected with probability proportional to EA size. EA size was the number of households residing in the EA. A household listing operation was carried out in all selected EAs, and the resulting lists of households served as a sampling frame for the selection of households in the second stage. In the second stage’s selection, a fixed number of 24 households were selected in every cluster through equal probability systematic sampling, resulting in a total sample size of approximately 13,872 selected households. The household listing was carried out using tablets, and random selection of households was carried out through computer programming. The survey interviewers interviewed only the pre-selected households. To prevent bias, no replacements and no changes of the pre-selected households were allowed in the implementing stages.

    For further details on sample selection, see Appendix A of the final report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Five questionnaires were used for the 2019 SLDHS: The Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. The questionnaires, based on The DHS Program’s standard Demographic and Health Survey (DHS-7) questionnaires, were adapted to reflect the population and health issues relevant to Sierra Leone. Comments were solicited from various stakeholders representing government ministries and agencies, nongovernmental organisations, and international donors. The survey protocol was reviewed and approved by the Sierra Leone Ethics and Scientific Review Committee and the ICF Institutional Review Board. All questionnaires were finalised in English, and the 2019 SLDHS used computer-assisted personal interviewing (CAPI) for data collection.

    Cleaning operations

    The processing of the 2019 SLDHS data began almost as soon as the fieldwork started. As data collection was completed in each cluster, all electronic data files were transferred via the IFSS to the Stats SL central office in Freetown. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams received alerts on any inconsistencies and errors. Secondary editing, carried out in the central office, involved resolving inconsistencies and coding open-ended questions. The Stats SL data processor coordinated the exercise at the central office. The biomarker paper questionnaires were compared with electronic data files to check for any inconsistencies in data entry. Data entry and editing were carried out using the CSPro Systems software package. Concurrent processing of the data offered a distinct advantage because it maximised the likelihood of the data being error-free and accurate. Timely generation of field check tables allowed for effective monitoring. The secondary editing of the data was completed in mid-October 2019.

    Response rate

    A total of 13,793 households were selected for the sample, of which 13,602 were occupied. Of the occupied households, 13,399 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 16,099 women age 15-49 were identified for individual interviews; interviews were completed with 15,574 women, yielding a response rate of 97%. In the subsample of households selected for the male survey, 7,429 men age 15-59 were identified, and 7,197 were successfully interviewed, yielding a response rate of 97%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2019 Sierra Leone Demographic and Health Survey (SLDHS) to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2019 SLDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    Sampling errors are usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2019 SLDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programmes developed by ICF. These programmes use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Note: A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data appraisal

    Data Quality Tables

    • Household age distribution
    • Age distribution of eligible and interviewed women
    • Age distribution of eligible and interviewed men
    • Completeness of reporting
    • Births by calendar years
    • Reporting of age at death in days
    • Reporting of age at death in months
    • Standardisation exercise results from anthropometry training
    • Height measurements from random subsample of measured children
    • Sibship size and sex ratio of siblings
    • Pregnancy-related mortality trends
    • Completeness of information on siblings

    See details of the data quality tables in Appendix C of the final

  17. N

    Income Distribution by Quintile: Mean Household Income in Fall River, WI //...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Fall River, WI // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4821bab8-f81d-11ef-a994-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin, Fall River
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Fall River, WI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 20,265, while the mean income for the highest quintile (20% of households with the highest income) is 165,257. This indicates that the top earners earn 8 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 229,617, which is 138.95% higher compared to the highest quintile, and 1133.07% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Fall River median household income. You can refer the same here

  18. Cambodia Population: Census: Otdar Mean Chey

    • ceicdata.com
    Updated Jul 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Cambodia Population: Census: Otdar Mean Chey [Dataset]. https://www.ceicdata.com/en/cambodia/population-census/population-census-otdar-mean-chey
    Explore at:
    Dataset updated
    Jul 16, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1998 - Dec 1, 2019
    Area covered
    Cambodia
    Variables measured
    Population
    Description

    Cambodia Population: Census: Otdar Mean Chey data was reported at 267,703.000 Person in 2024. This records a decrease from the previous number of 276,038.000 Person for 2019. Cambodia Population: Census: Otdar Mean Chey data is updated yearly, averaging 231,390.000 Person from Dec 1998 (Median) to 2024, with 5 observations. The data reached an all-time high of 276,038.000 Person in 2019 and a record low of 68,279.000 Person in 1998. Cambodia Population: Census: Otdar Mean Chey data remains active status in CEIC and is reported by National Institute of Statistics. The data is categorized under Global Database’s Cambodia – Table KH.G002: Population: Census.

  19. U.S. seniors as a percentage of the total population 1950-2050

    • statista.com
    • ai-chatbox.pro
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. seniors as a percentage of the total population 1950-2050 [Dataset]. https://www.statista.com/statistics/457822/share-of-old-age-population-in-the-total-us-population/
    Explore at:
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, about 17.7 percent of the American population was 65 years old or over; an increase from the last few years and a figure which is expected to reach 22.8 percent by 2050. This is a significant increase from 1950, when only eight percent of the population was 65 or over. A rapidly aging population In recent years, the aging population of the United States has come into focus as a cause for concern, as the nature of work and retirement is expected to change to keep up. If a population is expected to live longer than the generations before, the economy will have to change as well to fulfill the needs of the citizens. In addition, the birth rate in the U.S. has been falling over the last 20 years, meaning that there are not as many young people to replace the individuals leaving the workforce. The future population It’s not only the American population that is aging -- the global population is, too. By 2025, the median age of the global workforce is expected to be 39.6 years, up from 33.8 years in 1990. Additionally, it is projected that there will be over three million people worldwide aged 100 years and over by 2050.

  20. Median age of the U.S. population 1960-2023

    • statista.com
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Median age of the U.S. population 1960-2023 [Dataset]. https://www.statista.com/statistics/241494/median-age-of-the-us-population/
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the median age of the population of the United States was 39.2 years. While this may seem quite young, the median age in 1960 was even younger, at 29.5 years. The aging population in the United States means that society is going to have to find a way to adapt to the larger numbers of older people. Everything from Social Security to employment to the age of retirement will have to change if the population is expected to age more while having fewer children. The world is getting older It’s not only the United States that is facing this particular demographic dilemma. In 1950, the global median age was 23.6 years. This number is projected to increase to 41.9 years by the year 2100. This means that not only the U.S., but the rest of the world will also have to find ways to adapt to the aging population.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Fall River, WI [Dataset]. https://www.neilsberg.com/research/datasets/948dd7e0-7479-11ee-949f-3860777c1fe6/

Income Distribution by Quintile: Mean Household Income in Fall River, WI

Explore at:
json, csvAvailable download formats
Dataset updated
Jan 11, 2024
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Fall River, Wisconsin
Variables measured
Income Level, Mean Household Income
Measurement technique
The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents the mean household income for each of the five quintiles in Fall River, WI, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

Key observations

  • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 23,283, while the mean income for the highest quintile (20% of households with the highest income) is 181,018. This indicates that the top earners earn 8 times compared to the lowest earners.
  • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 246,905, which is 136.40% higher compared to the highest quintile, and 1060.45% higher compared to the lowest quintile.

Mean household income by quintiles in Fall River, WI (in 2022 inflation-adjusted dollars))

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Income Levels:

  • Lowest Quintile
  • Second Quintile
  • Third Quintile
  • Fourth Quintile
  • Highest Quintile
  • Top 5 Percent

Variables / Data Columns

  • Income Level: This column showcases the income levels (As mentioned above).
  • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Fall River median household income. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu