5 datasets found
  1. P

    DS-1000 Dataset

    • paperswithcode.com
    Updated May 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuhang Lai; Chengxi Li; Yiming Wang; Tianyi Zhang; Ruiqi Zhong; Luke Zettlemoyer; Scott Wen-tau Yih; Daniel Fried; Sida Wang; Tao Yu (2024). DS-1000 Dataset [Dataset]. https://paperswithcode.com/dataset/ds-1000
    Explore at:
    Dataset updated
    May 6, 2024
    Authors
    Yuhang Lai; Chengxi Li; Yiming Wang; Tianyi Zhang; Ruiqi Zhong; Luke Zettlemoyer; Scott Wen-tau Yih; Daniel Fried; Sida Wang; Tao Yu
    Description

    DS-1000 is a code generation benchmark with a thousand data science questions spanning seven Python libraries that (1) reflects diverse, realistic, and practical use cases, (2) has a reliable metric, (3) defends against memorization by perturbing questions.

  2. h

    basemodel-qwen2-7B-eval-ds1000

    • huggingface.co
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Phan Tat An (2025). basemodel-qwen2-7B-eval-ds1000 [Dataset]. https://huggingface.co/datasets/dnanper/basemodel-qwen2-7B-eval-ds1000
    Explore at:
    Dataset updated
    Jul 8, 2025
    Authors
    Phan Tat An
    Description

    dnanper/basemodel-qwen2-7B-eval-ds1000 dataset hosted on Hugging Face and contributed by the HF Datasets community

  3. d

    Vegetation - Central Valley Riparian and Sacramento Valley [ds1000]

    • datadiscoverystudio.org
    • data.wu.ac.at
    Updated Apr 28, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California State University, Chico, Geographical Information Center (2014). Vegetation - Central Valley Riparian and Sacramento Valley [ds1000] [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/fb356f92185549b1b9a4ad0f68e0e483/html
    Explore at:
    Dataset updated
    Apr 28, 2014
    Authors
    California State University, Chico, Geographical Information Center
    Area covered
    Description

    This data set combines vegetation datasets from three mapping project areas in the Sacramento Valley and riparian areas of the San Joaquin Valley to facilitate regional planning, conservation, and enhancement of biological resources by state and local agencies, project partners and regional stakeholders. This dataset meets the National Vegetation Classfication Standared and California Vegetation Classification and Mapping Standards. Vegetation is mapped to the Alliance level with a 1-acre minimum mapping unit. Polygons are also attributed with total bird's-eye cover of trees, shrubs and herbs. Detailed reports on the classification and mapping standards can be downloaded (see summary for links).

  4. C

    CSV catalog of Dati.comune.milano.it datasets

    • ckan.mobidatalab.eu
    csv, json
    Updated Dec 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unità Open Data (2023). CSV catalog of Dati.comune.milano.it datasets [Dataset]. https://ckan.mobidatalab.eu/dataset/ds1000-dataset-csv-catalogue
    Explore at:
    json(936753), csv(821838)Available download formats
    Dataset updated
    Dec 9, 2023
    Dataset provided by
    Unità Open Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Milan
    Description

    Catalog of datasets published by the Municipality of Milan, on the portal http://dati.comune.milano.it (according to the DCAT-AP_IT standard) in tabular format.

  5. d

    2040_6 - Sensitivität C

    • doi.org
    • datacatalogue.cessda.eu
    • +2more
    Updated Sep 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). 2040_6 - Sensitivität C [Dataset]. http://doi.org/10.23662/FORS-DS-1000-1
    Explore at:
    Dataset updated
    Sep 11, 2019
    Description

    Die nationalen Verkehrsmodelle basieren auf den Strukturdaten 2010. Dieser Datensatz enthält einige Modelle für 2040. Weitere Modelle sind für 2040 sowie für 2010, 2020 und 2030 in den anderen Datensätzen des Projekts verfügbar. Für einen Überblick über den Aufbau des Datensatzes können Sie sich das Dokument ansehen: (Read me first) Projektbeschreibung Verkehrsmodellierung im UVEK D/F/I.

    Les modèles nationaux des transports sont effectués sur la base des données structurelles de 2010. Ce jeu de données contient certains modèles pour 2040. D’autres modèles sont disponibles pour 2040, ainsi que pour 2010, 2020 et 2030 dans les autres jeux de données du projet. Pour une vue d'ensemble de la structure des données, vous pouvez consulter le document: (Read me first) Projektbeschreibung Verkehrsmodellierung im UVEK D/F/I.

    National transport models are based on structural data from 2010. This dataset contains some models for 2040. Other models are available for 2040, as well as for 2010, 2020 and 2030 in the other datasets of the project. For an overview of the data structure, you can consult the document: (Read me first) Projektbeschreibung Verkehrsmodellierung im UVEK D/F/I.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yuhang Lai; Chengxi Li; Yiming Wang; Tianyi Zhang; Ruiqi Zhong; Luke Zettlemoyer; Scott Wen-tau Yih; Daniel Fried; Sida Wang; Tao Yu (2024). DS-1000 Dataset [Dataset]. https://paperswithcode.com/dataset/ds-1000

DS-1000 Dataset

Explore at:
Dataset updated
May 6, 2024
Authors
Yuhang Lai; Chengxi Li; Yiming Wang; Tianyi Zhang; Ruiqi Zhong; Luke Zettlemoyer; Scott Wen-tau Yih; Daniel Fried; Sida Wang; Tao Yu
Description

DS-1000 is a code generation benchmark with a thousand data science questions spanning seven Python libraries that (1) reflects diverse, realistic, and practical use cases, (2) has a reliable metric, (3) defends against memorization by perturbing questions.

Search
Clear search
Close search
Google apps
Main menu