Facebook
TwitterThe High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model Mosaic provides a unique and continuous representation of the high resolution elevation data available across the country. The High Resolution Digital Elevation Model (HRDEM) product used is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The mosaic is available for both the Digital Terrain Model (DTM) and the Digital Surface Model (DSM) from web mapping services. It is part of the CanElevation Series created to support the National Elevation Data Strategy implemented by NRCan. This strategy aims to increase Canada's coverage of high-resolution elevation data and increase the accessibility of the products. Unlike the HRDEM product in the same series, which is distributed by acquisition project without integration between projects, the mosaic is created to provide a single, continuous representation of strategy data. The most recent datasets for a given territory are used to generate the mosaic. This mosaic is disseminated through the Data Cube Platform, implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The mosaic is available from Web Map Services (WMS), Web Coverage Services (WCS) and SpatioTemporal Asset Catalog (STAC) collections. Accessible data includes the Digital Terrain Model (DTM), the Digital Surface Model (DSM) and derived products such as shaded relief and slope. The mosaic is referenced to the Canadian Height Reference System 2013 (CGVD2013) which is the reference standard for orthometric heights across Canada. Source data for HRDEM datasets used to create the mosaic is acquired through multiple projects with different partners. Collaboration is a key factor to the success of the National Elevation Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 2m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
Facebook
Twitterhttps://artefacts.ceda.ac.uk/licences/specific_licences/landmap.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/landmap.pdf
A Digital Terrain Model (DTM) for most of Scotland provided by GetMapping and made available via the Landmap service, at 5m resolution. The 5m DTM is a photogrammetrically derived product from stereo aerial photography collected between 1999 and 2008. The aerial photography was captured at a resolution of between 10cm and 25cm. A digital elevation model is a digital model or 3D representation of a terrain's surface and, in contrast to a Digital Surface Model (DSM), represents the bare ground surface without any objects like plants and buildings. The Joint Information Systems Committee (JISC) funded Landmap service which ran from 2001 to July 2014 collected and hosted a large amount of earth observation data for the majority of the UK, part of which was elevation data. After removal of JISC funding in 2013, the Landmap service is no longer operational, with the data now held at the NEODC.
When using these data please also add the following copyright statement: © GetMapping yyyy
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Digital Terrain Model (DTM) for Continental Europe was derived using Ensemble Machine Learning (EML) with publicly available Digital Surface Models. EML was trained using GEDI level 2B points (Level 2A; "elev_lowestmode") and ICESat-2 (ATL08; "h_te_mean"). About 9 million points were overlaid vs MERITDEM, AW3D30, GLO-30, EU DEM, GLAD canopy height, tree cover and surface water cover maps. An ensemble prediction model (mlr package in R) was fitted using random forest, Cubist and GLM, and used to predict the most probable terrain height (bare earth).
The predicted elevations are based on the GEDI data hence the reference water surface (WGS84 ellipsoid) is about 43 m higher than the sea water surface for a specific EU country. Before modeling, reference elevations were corrected to the Earth Gravitational Model 2008 (EGM2008) by using the 5-arcdegree resolution correction surface (Pavlis et al, 2012).
Details on the work to create this dataset can be found here:
NOTE:This dataset has been converted from its original units of decimeters to meters to aid comparisons with other datasets in the OpenTopography catalog.
Facebook
TwitterThis dataset consists of the Digital Terrain Model 50m resolution data (DTM10) from the NEXTMap British Digital Terrain Model project produced by Intermap. These data have a spatial resolution of 50m and cover the British Isles.
Facebook
Twitterhttps://eidc.ceh.ac.uk/licences/OGLtellus/plainhttps://eidc.ceh.ac.uk/licences/OGLtellus/plain
This is a high resolution spatial dataset of Digital Terrain Model (DTM) data in South West England. The DTM along with a Digital Surface Model (DSM) cover an area of 9424 km2 that includes all the land west of Exmouth (i.e. west of circa 3 degrees 21 minutes West). The DTM represents the topographic model (height) of the bare earth. The dataset is a part of outcomes from the Centre for Ecology & Hydrology South West (SW) Project. There is also a Digital Surface Model (DSM) dataset covering the same areas available from the SW project.
Facebook
TwitterThe Digital Terrain Model (DTM) is a bare earth model, posted at 5m with a vertical accuracy of less than 60cm RMSE (root mean square error). The model represents the bare ground surface without any objects like trees and buildings. The dataset covers Great Britain. The first surface model, the Digital Surface Model (DSM), which represents the earth’s surface including all objects on the surface, is produced using the digital stereo aerial photography acquired by Getmapping. The DSM is edited to produce a 5m DTM product. A suite of algorithms have been applied to semi-automatically edit the DSM and remove unwanted surface features such as buildings and vegetation. These algorithms include a routine which reduces the woodland canopy areas based on a bounding polygon. This requires some manual intervention to create bounding polygons for woodland extents and identify true ground level. In addition, break lines are captured where required to ensure true terrain features are not removed and that bodies of water, such as lakes, remain flat. The PGA Elevation data offers improved spatial resolution compared to the NEXTMap data. The data is from the Pan Government Agreement (PGA) and an in-perpetuity license has been granted to BGS. The data is being managed by the Earth and Planetary Observation and Monitoring (EPOM) Team in support of the wider BGS Programme.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In the scope of the International Civil Aviation Organization (ICAO) requiring countries and airports to provide electronic Terrain and Obstacle Data (eTOD), the Administration de la navigation aérienne has been tasked by the Government to take the steps necessary to comply with this requirement. This Digital Terrain Model (DTM) is the result of a first LIDAR survey flight that has been done in October 2017 and is of a higher resolution than required by ICAO, thus for general purpose. For this reason this DTM also uses the national reference systems LUREF and NGL. The data itself is split up in 4 different areas, which are specified as follows: Area 1: The entire territory of Luxembourg; Area 2: Terminal Control Area (this area is larger than the territory of Luxembourg); Area 3: Aerodrome movement area; Area 4: Category II or III operations (Runway 24). The different areas come with different numerical requirements, such as data accuracy and resolution. Follow the links in the description or consult metadata for further Information.
Facebook
TwitterThe Medium Resolution Digital Elevation Model (MRDEM) product is a multi-source product that integrates elevation data from the Copernicus DEM acquired during the TanDEM-X Mission, and the High Resolution Digital Elevation Model data derived from airborne lidar. This product provides a complete, 30 meters resolution, nationwide coverage for Canada. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived products. The spatial coverage extends into the USA, where needed, to provide coverage for cross-border watersheds in support of hydrological studies and applications.
The MRDEM DSM dataset is based on the GLO-30 version of the Copernicus DEM. The process to generate the MRDEM DTM dataset is more complex and involves different sources. Where available, the HRDEM Mosaic derived from lidar was used since it already provides reliable terrain elevation values. The HRDEM Mosaic data used was resampled from 1 meter to 30 meters. Elsewhere, the processing workflow combines a forest removal model and a settlement removal model that is applied to the GLO-30 values in order to estimate the terrain elevation values.
Facebook
TwitterPLEASE NOTE: This dataset has been retired. A new version of the data is available here: https://environment.data.gov.uk/dataset/09ea3b37-df3a-4e8b-ac69-fb0842227b04
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering >93% of England at 2m spatial resolution.
Produced by the Environment Agency in 2020, this dataset is derived from a combination of our Time Stamped archive and National LIDAR Programme, which has been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2020 LIDAR Composite contains surveys undertaken between 6th June 2000 and 1st September 2020. Please refer to the survey index files which shows, for any location, what Time Stamped survey or National LIDAR Programme block went into the production of the LIDAR composite for a specific location.
The DTM (Digital Terrain Model) is produced from the last return LIDAR signal. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface. Available to download as GeoTiff files in 5km grids, data is presented in metres, referenced to Ordinance Survey Newlyn, using the OSTN’15 transformation. All LIDAR data has a vertical accuracy of +/-15cm RMSE.
Light Detection and Ranging (LIDAR) is an airborne mapping technique, which uses a laser to measure the distance between the aircraft and the ground. Up to 500,000 measurements per second are made of the ground, allowing highly detailed terrain models to be generated at spatial resolutions of between 25cm and 2 metres. The Environment Agency’s open data LIDAR archives includes the Point Cloud data, and derived raster surface models of survey specific areas dating back to 1998 and composites of the best data available in any location.
This metadata record is for Approval for Access product AfA458.
Attribution statement: (c) Environment Agency copyright and/or database right 2021. All rights reserved. Attribution Statement: © Environment Agency copyright and/or database right 2015. All rights reserved.
Facebook
TwitterATTENTION! The files in this dataset are designed for streaming, not downloading. For the best experience, please follow the instructions available in the resources. In replacement of the former Canadian Digital Elevation Model (CDEM) that is no longer supported, the Medium Resolution Digital Elevation Model (MRDEM) product is a multi-source product that integrates elevation data from the Copernicus DEM** acquired during the TanDEM-X Mission (AIRBUS, 2022), and the High Resolution Digital Elevation Model data derived from airborne lidar. This product provides a complete, 30 meters resolution, nationwide coverage for Canada. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived products. The spatial coverage extends into the USA, where needed, to provide coverage for cross-border watersheds in support of hydrological studies and applications. The MRDEM-30-DSM is partially based on the GLO-30 version of the Copernicus DEM** (hereafter named GLO-30). Since elevation values from the GLO-30 are referenced to the EGM2008 geoid model, they were transformed to the Canadian Height Reference System of 2013 (CGVD2013), using the CGG2013 geoid model. Where available, the MRDEM-30-DSM integrates surface data from the lidar-derived HRDEM mosaic, resampled from 1 m to 30 m. The process to generate the MRDEM-30-DTM is more complex. Where available, the HRDEM Mosaic derived from lidar was used since it already provides reliable terrain elevation values. The HRDEM Mosaic data used was resampled from 1m to 30m. Elsewhere, the processing workflow combines a forest removal model and a settlement removal model that is applied to the GLO-30 values in order to estimate the terrain elevation values. Both datasets are projected to Canada Atlas Lambert NAD83 (CSRS) (EPSG:3979). The MRDEM is referenced to the CGVD2013 which is the reference standard for orthometric heights across Canada. The product Medium Resolution Digital Elevation Model (MRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. ** This product was in part produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014- 2018 provided under COPERNICUS by the European Union and ESA; all rights reserved. The organisations in charge of the Copernicus program by law or by delegation do not incur any liability for any use of the Copernicus WorldDEM-30.
Facebook
TwitterThe 10 m resolution Lidar Digital Elevation Model (DEM) is the primary elevation data product produced and distributed by the National Park Service, Great Smoky Mountains National Park.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In the scope of the International Civil Aviation Organization (ICAO) requiring countries and airports to provide electronic Terrain and Obstacle Data (eTOD), the Administration de la navigation aérienne has been tasked by the Government to take the steps necessary to comply with this requirement. This Digital Surface Model (DSM) is the result of a first LIDAR survey flight that has been done in October 2017 and is of a higher resolution than required by ICAO, thus for general purpose. For this reason this DSM also uses the national reference systems LUREF and NGL. The data itself is split up in 4 different areas, which are specified as follows: Area 1: The entire territory of Luxembourg; Area 2: Terminal Control Area (this area is larger than the territory of Luxembourg); Area 3: Aerodrome movement area; Area 4: Category II or III operations (Runway 24). The different areas come with different numerical requirements, such as data accuracy and resolution. Follow the links in the description or consult metadata for further Information.
Facebook
TwitterThis 30 Meter Digital Elevation Model (DEM) is a copy of the USGS 1:24,000 scale Level 2 DEMs for the State.
There are three quadrangles known be be Level 1 DEM data: Town Line Lake (q1925), Grand Portage (q1261) and Grand Portage OE N (q1161).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected between June and October 2018.An ordnance datum (OD) is a vertical datum used as the basis for deriving heights on maps. This data is referenced to the Malin Head Vertical Datum which is the mean sea level of the tide gauge at Malin Head, County Donegal. It was adopted as the national datum in 1970 from readings taken between 1960 and 1969 and all heights on national grid maps are measured above this datum. Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface.Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features.Hillshading is a method which gives a 3D appearance to the terrain. It shows the shape of hills and mountains using shading (levels of grey) on a map, by the use of graded shadows that would be cast by high ground if light was shining from a chosen direction.This data shows the hillshade of the DTM.This data was collected by BlueSky and GeoAeroSpace and provided to the Geological Survey Ireland. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution is 1m.Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. This data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
The DTM is a homogeneous and regular point grid indicating the height of the ground level in order to model its surface. The DTM 1m is achieved by interpolating in Lambert 2008 source data in Lambert 72 and at a 1m-resolution from the Flemish and Brussels regions, and by adding Lambert 2008 data at 1m-resolution from the Walloon Region. The DTM 5m has an additional source, namely drawn structure lines and points adapted during systematic and continuous update by photogrammetric surveys. The DTM 20m is obtained by resampling of the DTM 1m.
Facebook
TwitterPLEASE NOTE: This dataset has been retired. A new version of the data is available here: https://environment.data.gov.uk/dataset/13787b9a-26a4-4775-8523-806d13af58fc The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering >88% of England at 1m spatial resolution. Produced by the Environment Agency in 2020, this dataset is derived from a combination of our Time Stamped archive and National LIDAR Programme, which has been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged. The 2020 LIDAR Composite contains surveys undertaken between 6th June 2000 and 1st September 2020. Please refer to the survey index files which shows, for any location, what Time Stamped survey or National LIDAR Programme block went into the production of the LIDAR composite for a specific location. The DTM (Digital Terrain Model) is produced from the last return LIDAR signal. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface. Available to download as GeoTiff files in 5km grids, data is presented in metres, referenced to Ordinance Survey Newlyn, using the OSTN’15 transformation. All LIDAR data has a vertical accuracy of +/-15cm RMSE. Light Detection and Ranging (LIDAR) is an airborne mapping technique, which uses a laser to measure the distance between the aircraft and the ground. Up to 500,000 measurements per second are made of the ground, allowing highly detailed terrain models to be generated at spatial resolutions of between 25cm and 2 metres. The Environment Agency’s open data LIDAR archives includes the Point Cloud data, and derived raster surface models of survey specific areas dating back to 1998 and composites of the best data available in any location. This metadata record is for Approval for Access product AfA458. Attribution statement: (c) Environment Agency copyright and/or database right 2021. All rights reserved. Attribution Statement: © Environment Agency copyright and/or database right 2015. All rights reserved.
Facebook
TwitterThe High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.