Dataset Card for test-data-generator
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/franciscoflorencio/test-data-generator/raw/main/pipeline.yaml"
or explore the configuration: distilabel pipeline info --config… See the full description on the dataset page: https://huggingface.co/datasets/franciscoflorencio/test-data-generator.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset used in the article entitled 'Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools'. These datasets can be used to test several characteristics in machine learning and data processing algorithms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Testing web APIs automatically requires generating input data values such as addressess, coordinates or country codes. Generating meaningful values for these types of parameters randomly is rarely feasible, which means a major obstacle for current test case generation approaches. In this paper, we present ARTE, the first semantic-based approach for the Automated generation of Realistic TEst inputs for web APIs. Specifically, ARTE leverages the specification of the API under test to extract semantically related values for every parameter by applying knowledge extraction techniques. Our approach has been integrated into RESTest, a state-of-the-art tool for API testing, achieving an unprecedented level of automation which allows to generate up to 100\% more valid API calls than existing fuzzing techniques (30\% on average). Evaluation results on a set of 26 real-world APIs show that ARTE can generate realistic inputs for 7 out of every 10 parameters, outperforming the results obtained by related approaches.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This training data was generated using GPT-4o as part of the 'Drawing with LLM' competition (https://www.kaggle.com/competitions/drawing-with-llms). It can be used to fine-tune small language models for the competition or serve as an augmentation dataset alongside other data sources.
The dataset is generated in two steps using the GPT-4o model. - In the first step, topic descriptions relevant to the competition are generated using a specific prompt. By running this prompt multiple times, over 3,000 descriptions were collected.
prompt=f""" I am participating in an SVG code generation competition. The competition involves generating SVG images based on short textual descriptions of everyday objects and scenes, spanning a wide range of categories. The key guidelines are as follows: - Descriptions are generic and do not contain brand names, trademarks, or personal names. - No descriptions include people, even in generic terms. - Descriptions are concise—each is no more than 200 characters, with an average length of about 50 characters. - Categories cover various domains, with some overlap between public and private test sets. To train a small LLM model, I am preparing a synthetic dataset. Could you generate 100 unique topics aligned with the competition style? Requirements: - Each topic should range between **20 and 200 characters**, with an **average around 60 characters**. - Ensure **diversity and creativity** across topics. - **50% of the topics** should come from the categories of **landscapes**, **abstract art**, and **fashion**. - Avoid duplication or overly similar phrasing. Example topics: a purple forest at dusk, gray wool coat with a faux fur collar, a lighthouse overlooking the ocean, burgundy corduroy, pants with patch pockets and silver buttons, orange corduroy overalls, a purple silk scarf with tassel trim, a green lagoon under a cloudy sky, crimson rectangles forming a chaotic grid, purple pyramids spiraling around a bronze cone, magenta trapezoids layered on a translucent silver sheet, a snowy plain, black and white checkered pants, a starlit night over snow-covered peaks, khaki triangles and azure crescents, a maroon dodecahedron interwoven with teal threads. Please return the 100 topics in csv format. """
prompt = f""" Generate SVG code to visually represent the following text description, while respecting the given constraints. Allowed Elements: `svg`, `path`, `circle`, `rect`, `ellipse`, `line`, `polyline`, `polygon`, `g`, `linearGradient`, `radialGradient`, `stop`, `defs` Allowed Attributes: `viewBox`, `width`, `height`, `fill`, `stroke`, `stroke-width`, `d`, `cx`, `cy`, `r`, `x`, `y`, `rx`, `ry`, `x1`, `y1`, `x2`, `y2`, `points`, `transform`, `opacity` Please ensure that the generated SVG code is well-formed, valid, and strictly adheres to these constraints. Focus on a clear and concise representation of the input description within the given limitations. Always give the complete SVG code with nothing omitted. Never use an ellipsis. The code is scored based on similarity to the description, Visual question anwering and aesthetic components. Please generate a detailed svg code accordingly. input description: {text} """
The raw SVG output is then cleaned and sanitized using a competition-specific sanitization class. After that, the cleaned SVG is scored using the SigLIP model to evaluate text-to-SVG similarity. Only SVGs with a score above 0.5 are included in the dataset. On average, out of three SVG generations, only one meets the quality threshold after the cleaning, sanitization, and scoring process.
https://www.nist.gov/open/licensehttps://www.nist.gov/open/license
This is a program that takes in a description of a cryptographic algorithm implementation's capabilities, and generates test vectors to ensure the implementation conforms to the standard. After generating the test vectors, the program also validates the correctness of the responses from the user.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Insider Threat Test Dataset is a collection of synthetic insider threat test datasets that provide both background and malicious actor synthetic data.The CERT Division, in partnership with ExactData, LLC, and under sponsorship from DARPA I2O, generated a collection of synthetic insider threat test datasets. These datasets provide both synthetic background data and data from synthetic malicious actors.For more background on this data, please see the paper, Bridging the Gap: A Pragmatic Approach to Generating Insider Threat Data.Datasets are organized according to the data generator release that created them. Most releases include multiple datasets (e.g., r3.1 and r3.2). Generally, later releases include a superset of the data generation functionality of earlier releases. Each dataset file contains a readme file that provides detailed notes about the features of that release.The answer key file answers.tar.bz2 contains the details of the malicious activity included in each dataset, including descriptions of the scenarios enacted and the identifiers of the synthetic users involved.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
This repository hosts the Testing Roads for Autonomous VEhicLes (TRAVEL) dataset. TRAVEL is an extensive collection of virtual roads that have been used for testing lane assist/keeping systems (i.e., driving agents) and data from their execution in state of the art, physically accurate driving simulator, called BeamNG.tech. Virtual roads consist of sequences of road points interpolated using Cubic splines.
Along with the data, this repository contains instructions on how to install the tooling necessary to generate new data (i.e., test cases) and analyze them in the context of test regression. We focus on test selection and test prioritization, given their importance for developing high-quality software following the DevOps paradigms.
This dataset builds on top of our previous work in this area, including work on
test generation (e.g., AsFault, DeepJanus, and DeepHyperion) and the SBST CPS tool competition (SBST2021),
test selection: SDC-Scissor and related tool
test prioritization: automated test cases prioritization work for SDCs.
Dataset Overview
The TRAVEL dataset is available under the data folder and is organized as a set of experiments folders. Each of these folders is generated by running the test-generator (see below) and contains the configuration used for generating the data (experiment_description.csv), various statistics on generated tests (generation_stats.csv) and found faults (oob_stats.csv). Additionally, the folders contain the raw test cases generated and executed during each experiment (test..json).
The following sections describe what each of those files contains.
Experiment Description
The experiment_description.csv contains the settings used to generate the data, including:
Time budget. The overall generation budget in hours. This budget includes both the time to generate and execute the tests as driving simulations.
The size of the map. The size of the squared map defines the boundaries inside which the virtual roads develop in meters.
The test subject. The driving agent that implements the lane-keeping system under test. The TRAVEL dataset contains data generated testing the BeamNG.AI and the end-to-end Dave2 systems.
The test generator. The algorithm that generated the test cases. The TRAVEL dataset contains data obtained using various algorithms, ranging from naive and advanced random generators to complex evolutionary algorithms, for generating tests.
The speed limit. The maximum speed at which the driving agent under test can travel.
Out of Bound (OOB) tolerance. The test cases' oracle that defines the tolerable amount of the ego-car that can lie outside the lane boundaries. This parameter ranges between 0.0 and 1.0. In the former case, a test failure triggers as soon as any part of the ego-vehicle goes out of the lane boundary; in the latter case, a test failure triggers only if the entire body of the ego-car falls outside the lane.
Experiment Statistics
The generation_stats.csv contains statistics about the test generation, including:
Total number of generated tests. The number of tests generated during an experiment. This number is broken down into the number of valid tests and invalid tests. Valid tests contain virtual roads that do not self-intersect and contain turns that are not too sharp.
Test outcome. The test outcome contains the number of passed tests, failed tests, and test in error. Passed and failed tests are defined by the OOB Tolerance and an additional (implicit) oracle that checks whether the ego-car is moving or standing. Tests that did not pass because of other errors (e.g., the simulator crashed) are reported in a separated category.
The TRAVEL dataset also contains statistics about the failed tests, including the overall number of failed tests (total oob) and its breakdown into OOB that happened while driving left or right. Further statistics about the diversity (i.e., sparseness) of the failures are also reported.
Test Cases and Executions
Each test..json contains information about a test case and, if the test case is valid, the data observed during its execution as driving simulation.
The data about the test case definition include:
The road points. The list of points in a 2D space that identifies the center of the virtual road, and their interpolation using cubic splines (interpolated_points)
The test ID. The unique identifier of the test in the experiment.
Validity flag and explanation. A flag that indicates whether the test is valid or not, and a brief message describing why the test is not considered valid (e.g., the road contains sharp turns or the road self intersects)
The test data are organized according to the following JSON Schema and can be interpreted as RoadTest objects provided by the tests_generation.py module.
{ "type": "object", "properties": { "id": { "type": "integer" }, "is_valid": { "type": "boolean" }, "validation_message": { "type": "string" }, "road_points": { §\label{line:road-points}§ "type": "array", "items": { "$ref": "schemas/pair" }, }, "interpolated_points": { §\label{line:interpolated-points}§ "type": "array", "items": { "$ref": "schemas/pair" }, }, "test_outcome": { "type": "string" }, §\label{line:test-outcome}§ "description": { "type": "string" }, "execution_data": { "type": "array", "items": { "$ref" : "schemas/simulationdata" } } }, "required": [ "id", "is_valid", "validation_message", "road_points", "interpolated_points" ] }
Finally, the execution data contain a list of timestamped state information recorded by the driving simulation. State information is collected at constant frequency and includes absolute position, rotation, and velocity of the ego-car, its speed in Km/h, and control inputs from the driving agent (steering, throttle, and braking). Additionally, execution data contain OOB-related data, such as the lateral distance between the car and the lane center and the OOB percentage (i.e., how much the car is outside the lane).
The simulation data adhere to the following (simplified) JSON Schema and can be interpreted as Python objects using the simulation_data.py module.
{ "$id": "schemas/simulationdata", "type": "object", "properties": { "timer" : { "type": "number" }, "pos" : { "type": "array", "items":{ "$ref" : "schemas/triple" } } "vel" : { "type": "array", "items":{ "$ref" : "schemas/triple" } } "vel_kmh" : { "type": "number" }, "steering" : { "type": "number" }, "brake" : { "type": "number" }, "throttle" : { "type": "number" }, "is_oob" : { "type": "number" }, "oob_percentage" : { "type": "number" } §\label{line:oob-percentage}§ }, "required": [ "timer", "pos", "vel", "vel_kmh", "steering", "brake", "throttle", "is_oob", "oob_percentage" ] }
Dataset Content
The TRAVEL dataset is a lively initiative so the content of the dataset is subject to change. Currently, the dataset contains the data collected during the SBST CPS tool competition, and data collected in the context of our recent work on test selection (SDC-Scissor work and tool) and test prioritization (automated test cases prioritization work for SDCs).
SBST CPS Tool Competition Data
The data collected during the SBST CPS tool competition are stored inside data/competition.tar.gz. The file contains the test cases generated by Deeper, Frenetic, AdaFrenetic, and Swat, the open-source test generators submitted to the competition and executed against BeamNG.AI with an aggression factor of 0.7 (i.e., conservative driver).
Name
Map Size (m x m)
Max Speed (Km/h)
Budget (h)
OOB Tolerance (%)
Test Subject
DEFAULT
200 × 200
120
5 (real time)
0.95
BeamNG.AI - 0.7
SBST
200 × 200
70
2 (real time)
0.5
BeamNG.AI - 0.7
Specifically, the TRAVEL dataset contains 8 repetitions for each of the above configurations for each test generator totaling 64 experiments.
SDC Scissor
With SDC-Scissor we collected data based on the Frenetic test generator. The data is stored inside data/sdc-scissor.tar.gz. The following table summarizes the used parameters.
Name
Map Size (m x m)
Max Speed (Km/h)
Budget (h)
OOB Tolerance (%)
Test Subject
SDC-SCISSOR
200 × 200
120
16 (real time)
0.5
BeamNG.AI - 1.5
The dataset contains 9 experiments with the above configuration. For generating your own data with SDC-Scissor follow the instructions in its repository.
Dataset Statistics
Here is an overview of the TRAVEL dataset: generated tests, executed tests, and faults found by all the test generators grouped by experiment configuration. Some 25,845 test cases are generated by running 4 test generators 8 times in 2 configurations using the SBST CPS Tool Competition code pipeline (SBST in the table). We ran the test generators for 5 hours, allowing the ego-car a generous speed limit (120 Km/h) and defining a high OOB tolerance (i.e., 0.95), and we also ran the test generators using a smaller generation budget (i.e., 2 hours) and speed limit (i.e., 70 Km/h) while setting the OOB tolerance to a lower value (i.e., 0.85). We also collected some 5, 971 additional tests with SDC-Scissor (SDC-Scissor in the table) by running it 9 times for 16 hours using Frenetic as a test generator and defining a more realistic OOB tolerance (i.e., 0.50).
Generating new Data
Generating new data, i.e., test cases, can be done using the SBST CPS Tool Competition pipeline and the driving simulator BeamNG.tech.
Extensive instructions on how to install both software are reported inside the SBST CPS Tool Competition pipeline Documentation;
http://www.apache.org/licenses/LICENSE-2.0http://www.apache.org/licenses/LICENSE-2.0
This dataset contains 56,964 conversations between een AI assistant and a (fake) "Human" (generated) in Dutch, specifically in the domain of programming (Stack Overflow). They are translations of Baize's machine-generated answers to the Stack Overflow dataset.
Data Instances
{'id': 9, 'input': 'Het gesprek tussen de mens en de AI-assistent. ' '[|Human|] Ik heb wat hulp nodig met Spark SQL union en het ordenen ' 'van kolommen. ' '[|AI|] Natuurlijk, ik help je graag. Waar heb je specifiek hulp ' 'bij nodig? ' '[|Human|] Ik wil de output van een UNION-query ordenen op een ' 'kolom die niet aanwezig is in de SELECT-instructie. Is dat ' 'mogelijk? ' '[|AI|] Ja, het is mogelijk met Spark SQL. Je kunt de ordinale ' 'positie van de kolom in de ORDER BY-clausule gebruiken in plaats ' 'van de kolomnaam. Als je bijvoorbeeld wilt ordenen op de derde ' 'kolom in de SELECT-instructie, kun je ORDER BY 3 gebruiken. ' '[|Human|] Dat is nuttig. Kan ik ook een alias gebruiken in de ' 'ORDER BY-clausule? ' '[|AI|] Ja, je kunt een alias gebruiken in de ORDER BY-clausule. De ' 'alias moet worden gedefinieerd in de SELECT-instructie. Als je ' 'bijvoorbeeld de derde kolom als "col3" alias geeft, kun je ordenen ' 'met ORDER BY col3. ' '[|Human|] Oké, ik denk dat ik het begrijp. Kan ik dezelfde alias ' 'gebruiken voor kolommen uit beide tabellen in de UNION? ' '[|AI|] Nee, je kunt dezelfde alias niet gebruiken voor kolommen ' 'uit beide tabellen in de UNION. Elke tabel in de UNION moet een ' 'unieke alias hebben voor de kolommen. ' '[|Human|] ', 'topic': 'Spark SQL UNION - ORDER BY kolom niet in SELECT'},
Data Fields
id: the ID of the item. The following 82 IDs are not included because they could not be translated: [1713, 1937, 1960, 4326, 4356, 8357, 8542, 8827, 9137, 9782, 11560, 11961, 12244, 12362, 12488, 13259, 13621, 14445, 14835, 15006, 17746, 18808, 19285, 19426, 19491, 21270, 21661, 22098, 23352, 23840, 23869, 25148, 25928, 27102, 27856, 28387, 29942, 30041, 30251, 32396, 32742, 32941, 33628, 34116, 34648, 34859, 35977, 35987, 36035, 36456, 37028, 37238, 37640, 38107, 38735, 39015, 40984, 41115, 41567, 42397, 43219, 43783, 44599, 44980, 45239, 47676, 48922, 49534, 50282, 50683, 50804, 50919, 51076, 51211, 52000, 52183, 52489, 52595, 53884, 54726, 55795, 56992]
input: the machine-generated conversation between AI and "Human". Always starts with Het gesprek tussen de mens en de AI-assistent. and has at least one occurrence of both [|AI|] and [|Human|].
topic: the topic description
Dataset Creation
Both the translations and the topics were translated with OpenAI's API for gpt-3.5-turbo. max_tokens=1024, temperature=0 as parameters.
The prompt template to translate the input is (where src_lang was English and tgt_lang Dutch):
CONVERSATION_TRANSLATION_PROMPT = """You are asked to translate a conversation between an AI assistant and a human from {src_lang} into {tgt_lang}.
Here are the requirements that you should adhere to:
1. maintain the format: the conversation consists of the AI (marked as [|AI|]
) and the human ([|Human|]
) talking in turns and responding to each other;
2. do not translate the speaker identifiers [|AI|]
and [|Human|]
but always copy them into the translation in appropriate places;
3. ensure accurate translation and keep the correctness of the conversation;
4. make sure that text is fluent to read and does not contain grammatical errors. Use standard {tgt_lang} without regional bias;
5. translate the human's text using informal, but standard, language;
6. make sure to avoid biases (such as gender bias, grammatical bias, social bias);
7. if the human asks to correct grammar mistakes or spelling mistakes then you have to generate a similar mistake in {tgt_lang}, and then also generate a corrected output version for the AI in {tgt_lang};
8. if the human asks to translate text from one to another language, then you only translate the human's question to {tgt_lang} but you keep the translation that the AI provides in the language that the human requested;
9. do not translate code fragments but copy them as they are. If there are English examples, variable names or definitions in code fragments, keep them in English.
Now translate the following conversation with the requirements set out above. Do not provide an explanation and do not add anything else.
"""
The prompt to translate the topic is:
TOPIC_TRANSLATION_PROMPT = "Translate the following title of a conversation from {src_lang} to {tgt_lang} in a succinct,"
" summarizing manner. Translate accurately and formally. Do not provide any explanation"
" about the translation and do not include the original title.
"
The system message was:
You are a helpful assistant that translates English to Dutch to the requirements that are given to you.
Note that 82 items (0.1%) were not successfully translated. The translation was missing the AI identifier [|AI|] and/or the human one [|Human|]. The IDs for the missing items are [1713, 1937, 1960, 4326, 4356, 8357, 8542, 8827, 9137, 9782, 11560, 11961, 12244, 12362, 12488, 13259, 13621, 14445, 14835, 15006, 17746, 18808, 19285, 19426, 19491, 21270, 21661, 22098, 23352, 23840, 23869, 25148, 25928, 27102, 27856, 28387, 29942, 30041, 30251, 32396, 32742, 32941, 33628, 34116, 34648, 34859, 35977, 35987, 36035, 36456, 37028, 37238, 37640, 38107, 38735, 39015, 40984, 41115, 41567, 42397, 43219, 43783, 44599, 44980, 45239, 47676, 48922, 49534, 50282, 50683, 50804, 50919, 51076, 51211, 52000, 52183, 52489, 52595, 53884, 54726, 55795, 56992].
The translation quality has not been verified. Use at your own risk!
Licensing Information
Licensing info for Stack Overflow Questions is listed as Apache 2.0. If you use the current dataset, you should also adhere to the original license.
This text was generated (either in part or in full) with GPT-3 (gpt-3.5-turbo), OpenAI’s large-scale language-generation model. Upon generating draft language, the author reviewed, edited, and revised the language to their own liking and takes ultimate responsibility for the content of this publication.
If you use this dataset, you must also follow the Sharing and Usage policies.
As clearly stated in their Terms of Use, specifically 2c.iii, "[you may not] use output from the Services to develop models that compete with OpenAI". That means that you cannot use this dataset to build models that are intended to commercially compete with OpenAI. As far as I am aware, that is a specific restriction that should serve as an addendum to the current license.
This dataset is also available on the Hugging Face hub with the same DOI and license. See that README for more info.
The Space-based Imaging Spectroscopy and Thermal pathfindER (SISTER) activity originated in support of the NASA Earth System Observatory's Surface Biology and Geology (SBG) mission to develop prototype workflows with community algorithms and generate prototype data products envisioned for SBG. SISTER focused on developing a data system that is open, portable, scalable, standards-compliant, and reproducible. This collection contains EXPERIMENTAL workflows and sample data products, including (a) the Common Workflow Language (CWL) process file and a Jupyter Notebook that run the entire SISTER workflow capable of generating experimental sample data products spanning terrestrial ecosystems, inland and coastal aquatic ecosystems, and snow, (b) the archived algorithm steps (as OGC Application Packages) used to generate products at each step of the workflow, (c) a small number of experimental sample data products produced by the workflow which are based on the Airborne Visible/Infrared Imaging Spectrometer-Classic (AVIRIS or AVIRIS-CL) instrument, and (d) instructions for reproducing the sample products included in this dataset. DISCLAIMER: This collection contains experimental workflows, experimental community algorithms, and experimental sample data products to demonstrate the capabilities of an end-to-end processing system. The experimental sample data products provided have not been fully validated and are not intended for scientific use. The community algorithms provided are placeholders which can be replaced by any user's algorithms for their own science and application interests. These algorithms should not in any capacity be considered the algorithms that will be implemented in the upcoming Surface Biology and Geology mission.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sample size calculation per Cochrane review group; random review # generator (used to help pick reviews at random)
Static torque, no load, constant speed, and sinusoidal oscillation test data for a 10hp, 300rpm magnetically-geared generator prototype using either an adjustable load bank for a fixed resistance or an output power converter.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
FARLEAD2 receives a test scenario from the developer
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the repository for ISWC 2023 Resource Track submission for Text2KGBench: Benchmark for Ontology-Driven Knowledge Graph Generation from Text. Text2KGBench is a benchmark to evaluate the capabilities of language models to generate KGs from natural language text guided by an ontology. Given an input ontology and a set of sentences, the task is to extract facts from the text while complying with the given ontology (concepts, relations, domain/range constraints) and being faithful to the input sentences.
It contains two datasets (i) Wikidata-TekGen with 10 ontologies and 13,474 sentences and (ii) DBpedia-WebNLG with 19 ontologies and 4,860 sentences.
An example
An example test sentence:
Test Sentence: {"id": "ont_music_test_n", "sent": ""The Loco-Motion" is a 1962 pop song written by American songwriters Gerry Goffin and Carole King."}
An example of ontology:
Ontology: Music Ontology
Expected Output:
{ "id": "ont_k_music_test_n", "sent": ""The Loco-Motion" is a 1962 pop song written by American songwriters Gerry Goffin and Carole King.", "triples": [ { "sub": "The Loco-Motion", "rel": "publication date", "obj": "01 January 1962" },{ "sub": "The Loco-Motion", "rel": "lyrics by", "obj": "Gerry Goffin" },{ "sub": "The Loco-Motion", "rel": "lyrics by", "obj": "Carole King" },] }
The data is released under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) License.
The structure of the repo is as the following.
Text2KGBench
src: the source code used for generation and evaluation, and baseline
benchmark the code used to generate the benchmark
evaluation evaluation scripts for calculating the results
baseline code for generating the baselines including prompts, sentence similarities, and LLM client.
data: the benchmark datasets and baseline data. There are two datasets: wikidata_tekgen and dbpedia_webnlg.
wikidata_tekgen Wikidata-TekGen Dataset
ontologies 10 ontologies used by this dataset
train training data
test test data
manually_verified_sentences ids of a subset of test cases manually validated
unseen_sentences new sentences that are added by the authors which are not part of Wikipedia
test unseen test unseen test sentences
ground_truth ground truth for unseen test sentences.
ground_truth ground truth for the test data
baselines data related to running the baselines.
test_train_sent_similarity for each test case, 5 most similar train sentences generated using SBERT T5-XXL model.
prompts prompts corresponding to each test file
unseen prompts unseen prompts for the unseen test cases
Alpaca-LoRA-13B data related to the Alpaca-LoRA model
llm_responses raw LLM responses and extracted triples
eval_metrics ontology-level and aggregated evaluation results
unseen results results for the unseen test cases
llm_responses raw LLM responses and extracted triples
eval_metrics ontology-level and aggregated evaluation results
Vicuna-13B data related to the Vicuna-13B model
llm_responses raw LLM responses and extracted triples
eval_metrics ontology-level and aggregated evaluation results
dbpedia_webnlg DBpedia Dataset
ontologies 19 ontologies used by this dataset
train training data
test test data
ground_truth ground truth for the test data
baselines data related to running the baselines.
test_train_sent_similarity for each test case, 5 most similar train sentences generated using SBERT T5-XXL model.
prompts prompts corresponding to each test file
Alpaca-LoRA-13B data related to the Alpaca-LoRA model
llm_responses raw LLM responses and extracted triples
eval_metrics ontology-level and aggregated evaluation results
Vicuna-13B data related to the Vicuna-13B model
llm_responses raw LLM responses and extracted triples
eval_metrics ontology-level and aggregated evaluation results
This benchmark contains data derived from the TekGen corpus (part of the KELM corpus) [1] released under CC BY-SA 2.0 license and WebNLG 3.0 corpus [2] released under CC BY-NC-SA 4.0 license.
[1] Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami Al-Rfou. 2021. Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 3554–3565, Online. Association for Computational Linguistics.
[2] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. Creating Training Corpora for NLG Micro-Planners. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 179–188, Vancouver, Canada. Association for Computational Linguistics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets were used to validate and test the data pipeline deployment following the RADON approach. The dataset contains temperature and humidity sensor readings of a particular day, which are synthetically generated using a data generator and are stored as JSON files to validate and test (performance/load testing) the data pipeline components.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The code, strainenergy_v4_1.m, was used for generating and processing the dataset for load-displacement and stress-strain. Software Matlab version 6.1 was used for running the code. The specific variables of the parameters used to generate the current dataset are as follows:• ip1: input file containing the load-displacement data• diameter: fascicle diameter• laststrainpt: an estimate of the strain at rupture, r• orderpoly: an integral value from 2-7 which represents the order of the polynomial for fitting to the data from O to q• loadat1percent: y/n; to determine the value of the load (set at 1% of the maximum load) at which the specimen became taut. ‘y’ denotes yes; ‘n’ denotes no.The logfile.txt, contains the parameters used for deriving the values of the respective mechanical properties.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global credit card generator market is projected to experience robust growth with a market size of approximately USD 580 million in 2023, and it is anticipated to reach USD 1.2 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 8.5%. The rising need for secure and efficient credit card testing tools, driven by the expansion of e-commerce and digital transactions, forms a significant growth catalyst for this market. As online retail and digital financial services burgeon, the demand for reliable credit card generators continues to escalate, underscoring the importance of this market segment.
One of the pivotal growth drivers for the credit card generator market is the increasing complexity and sophistication of online payment systems. As e-commerce platforms and digital payment solutions proliferate worldwide, there is a growing need for comprehensive testing tools to ensure the reliability and security of these systems. Credit card generators play a crucial role in this context by providing developers and testers with the means to simulate various credit card scenarios, thereby enhancing the robustness of payment processing systems. Additionally, the rise in cyber threats and fraud necessitates stringent testing, further propelling market growth.
Another significant factor contributing to the market's expansion is the growing emphasis on fraud prevention and security. Financial institutions and businesses are increasingly investing in sophisticated tools to combat fraud and secure financial transactions. Credit card generators offer a practical solution for testing the efficacy of anti-fraud measures and ensuring that security protocols are adequately robust. By enabling the simulation of fraudulent activities and various transaction scenarios, these tools help organizations better prepare for and mitigate potential security breaches.
Furthermore, the marketing and promotional applications of credit card generators are also driving market growth. Companies leveraging digital marketing strategies use these tools to create dummy credit card numbers for various promotional activities, such as offering free trials or discounts, without exposing real customer data. This capability not only aids in marketing efforts but also ensures compliance with data privacy regulations, thereby enhancing consumer trust and brand reputation. The versatility of credit card generators in supporting both operational and marketing functions underscores their growing importance in the digital age.
Regionally, North America holds a significant share of the credit card generator market, driven by the high penetration of digital payment systems and advanced cybersecurity measures in the region. The presence of numerous financial institutions and technology companies further bolsters the market in North America. Meanwhile, Asia Pacific is expected to witness the fastest growth, fueled by the rapid digitalization of economies, increasing internet penetration, and burgeoning e-commerce activities. Europe also presents substantial opportunities due to stringent data protection regulations and the widespread adoption of digital transaction systems.
The credit card generator market can be segmented by type into software and online services. Software-based credit card generators are widely used by developers and testers within organizations to simulate credit card transactions and validate payment processing systems. These tools are typically integrated into the development and testing environments, providing a controlled and secure platform for generating valid credit card numbers. The demand for software-based generators is driven by their ability to offer customizable options and advanced features, such as bulk generation and API integration, which enhance the efficiency of testing processes.
Online services, on the other hand, cater to a broader audience, including individual users, small businesses, and marketers. These services are accessible via web platforms and provide an easy-to-use interface for generating credit card numbers for various purposes, such as testing, fraud prevention, and marketing promotions. The growing popularity of online credit card generators can be attributed to their convenience, accessibility, and the increasing need for temporary and disposable credit card numbers in the digital economy. These services are particularly useful for busin
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Fake Email Address Generator Market Analysis The global market for Fake Email Address Generators is expected to reach a value of XXX million by 2033, growing at a CAGR of XX% from 2025 to 2033. Key drivers of this growth include the increasing demand for privacy and anonymity online, the growing prevalence of spam and phishing attacks, and the proliferation of digital marketing campaigns. Additionally, the adoption of cloud-based solutions and the emergence of new technologies, such as artificial intelligence (AI), are further fueling market expansion. Key trends in the Fake Email Address Generator market include the growing popularity of enterprise-grade solutions, the emergence of disposable email services, and the increasing integration with other online tools. Restraints to market growth include concerns over security and data protection, as well as the availability of free or low-cost alternatives. The market is dominated by a few major players, including Burnermail, TrashMail, and Guerrilla Mail, but a growing number of smaller vendors are emerging with innovative solutions. Geographically, North America and Europe are the largest markets, followed by the Asia Pacific region.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Data generation in machine learning involves creating or manipulating data to train and evaluate machine learning models. The purpose of data generation is to provide diverse and representative examples that cover a wide range of scenarios, ensuring the model's robustness and generalization. Data augmentation techniques involve applying various transformations to existing data samples to create new ones. These transformations include: random rotations, translations, scaling, flips, and more. Augmentation helps in increasing the dataset size, introducing natural variations, and improving model performance by making it more invariant to specific transformations. The dataset contains GENERATED USA passports, which are replicas of official passports but with randomly generated details, such as name, date of birth etc. The primary intention of generating these fake passports is to demonstrate the structure and content of a typical passport document and to train the neural network to identify this type of document. Generated passports can assist in conducting research without accessing or compromising real user data that is often sensitive and subject to privacy regulations. Synthetic data generation allows researchers to develop and refine models using simulated passport data without risking privacy leaks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains 350 features engineered from the phasor measurements (PMU-type) signals from the IEEE New England 39-bus power system test case network, which are generated from the 9360 systematic MATLAB®/Simulink electro-mechanical transients simulations. It was prepared to serve as a convenient and open database for experimenting with different types of machine learning techniques for transient stability assessment (TSA) of electrical power systems.
Different load and generation levels of the New England 39-bus benchmark power system were systematically covered, as well as all three major types of short-circuit events (three-phase, two-phase and single-phase faults) in all parts of the network. The consumed power of the network was set to 80%, 90%, 100%, 110% and 120% of the basic system load levels. The short-circuits were located on the busbar or on the transmission line (TL). When they were located on a TL, it was assumed that they can occur at 20%, 40%, 60%, and 80% of the line length. Features were obtained directly from the time-domain signals at the pickup time (pre-fault value) and at the trip time (post-fault value) of the associated distance protection relays.
This is a stochastic dataset of 3120 cases, created from the population of 9360 systematic simulations, which features a statistical distribution of different fault types, as follows: single-phase (70%), double-phase (20%) and three-phase faults (10%). It also features a class imbalance, with less than 20% of cases belonging to the unstable class. Dataset is a compressed CSV file.
List of feature names in the dataset:
WmGx - rotor speed for each generator Gx, from G1 to G10,
DThetaGx - rotor angle deviation for each generator Gx, from G1 to G10,
ThetaGx - rotor mechanical angle for each generator Gx, from G1 to G10,
VtGx - stator voltage for each generator Gx, from G1 to G10,
IdGx - stator d-component current for each generator Gx, from G1 to G10,
IqGx - stator q-component current for each generator Gx, from G1 to G10,
LAfvGx - pre-fault power load angle for each generator Gx, from G1 to G10,
LAlvGx - post-fault power load angle for each generator Gx, from G1 to G10,
PfvGx - pre-falut value of the generator active power for each generator Gx, from G1 to G10,
PlvGx - post-falut value of the generator active power for each generator Gx, from G1 to G10,
QfvGx - pre-falut value of the generator reactive power for each generator Gx, from G1 to G10,
QlvGx - post-falut value of the generator reactive power for each generator Gx, from G1 to G10,
VAfvBx - pre-fault bus voltage magnitude in phase A for each bus Bx, from B1 to B39,
VBfvBx - pre-fault bus voltage magnitude in phase B for each bus Bx, from B1 to B39,
VCfvBx - pre-fault bus voltage magnitude in phase C for each bus Bx, from B1 to B39,
VAlvBx - post-fault bus voltage magnitude in phase A for each bus Bx, from B1 to B39,
VBlvBx - post-fault bus voltage magnitude in phase B for each bus Bx, from B1 to B39,
VClvBx - post-fault bus voltage magnitude in phase C for each bus Bx, from B1 to B39,
Stability - binary indicator (0/1) that determines if the power system was stable or unstable (0 - stable, 1 - unstable); this is the label variable.
License: Creative Commons CC-BY.
Disclaimer: This dataset is provided "as is", without any warranties of any kind.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Online store customer data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mountboy/online-store-customer-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This is a dummy dataset about USA online store transaction data.
There are 11 features. 1. Transaction_date - Transaction date 2. Transaction_ID - This is a unique transaction id 3. Gender - Customer Gender 4. Age - Customer Age 5. Marital_status - Marital status about customer 6. State_names - Customer location of State. 7. Segment - Customer membership 8. Employees_status - Customer employment status 9. Payment_method - Payment method used by customer 10. Referal - Customer coming from referral link or not 11. Amount_spent - Amount spent by customer per transaction
I am generating this dummy USA online store customer dataset with help of the Faker and Numpy python package. I would like to mention this article - https://towardsdatascience.com/generating-fake-data-with-python-c7a32c631b2a. It helped me a lot.
--- Original source retains full ownership of the source dataset ---
Dataset Card for test-data-generator
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/franciscoflorencio/test-data-generator/raw/main/pipeline.yaml"
or explore the configuration: distilabel pipeline info --config… See the full description on the dataset page: https://huggingface.co/datasets/franciscoflorencio/test-data-generator.