42 datasets found
  1. Excel dataset

    • kaggle.com
    zip
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinky Verma (2023). Excel dataset [Dataset]. https://www.kaggle.com/datasets/pinkyverma0256/excel-dataset
    Explore at:
    zip(13123 bytes)Available download formats
    Dataset updated
    Jun 29, 2023
    Authors
    Pinky Verma
    Description

    Dataset

    This dataset was created by Pinky Verma

    Contents

  2. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  3. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  4. Sample Excel dataset

    • figshare.com
    xlsx
    Updated Mar 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Bourke (2022). Sample Excel dataset [Dataset]. http://doi.org/10.6084/m9.figshare.19368707.v3
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 16, 2022
    Dataset provided by
    figshare
    Authors
    Peter Bourke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Test dataset for introductory online course in R

  5. Students marksheet dataset

    • kaggle.com
    zip
    Updated Jan 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohith Mahadevan (2022). Students marksheet dataset [Dataset]. https://www.kaggle.com/datasets/rohithmahadevan/students-marksheet-dataset
    Explore at:
    zip(3848 bytes)Available download formats
    Dataset updated
    Jan 31, 2022
    Authors
    Rohith Mahadevan
    Description

    This dataset is a sample dataset of student marks and people who are beginners can use this for visualization and data analytics purposes.

    The dataset is generated using mackaroo, a data generation tool for creating sample datasets

  6. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  7. marketing excel.xlsx

    • figshare.com
    xlsx
    Updated Mar 5, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Callie Hall (2017). marketing excel.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.4725535.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 5, 2017
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Callie Hall
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a spreadsheet of 1 of 10 companies in the shoe industry. Highlighting COGS, Total Revenue, Market share and Industry share.

  8. Data on Bike Buyers by using MS EXCEL

    • kaggle.com
    zip
    Updated Mar 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umasri (2022). Data on Bike Buyers by using MS EXCEL [Dataset]. https://www.kaggle.com/datasets/unica02/data-on-bike-buyers-by-using-ms-excel
    Explore at:
    zip(6808899 bytes)Available download formats
    Dataset updated
    Mar 25, 2022
    Authors
    Umasri
    Description

    The dataset includes customer id,Martial Status,Gender,Income,Children,Education,Occupation,Home Owner,Cars,Commute Distance,Region,Age,Purchased Bike. Blog

  9. s

    Data from: Fostering cultures of open qualitative research: Dataset 1 –...

    • orda.shef.ac.uk
    docx
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Hanchard; Itzel San Roman Pineda (2025). Fostering cultures of open qualitative research: Dataset 1 – Survey Responses [Dataset]. http://doi.org/10.15131/shef.data.23567250.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Matthew Hanchard; Itzel San Roman Pineda
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.

    The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:

    · Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book

    The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.

    The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.

    ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.

    This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.

    The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.

    The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.

    The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.

    The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.

    A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):

    · I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.

    The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk

    Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science

  10. Extracted excel spreadsheet data of included studies on HIV-related...

    • plos.figshare.com
    xlsx
    Updated Oct 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gebresilassie Tadesse; Gidey Rtbey; Fantahun Andualem; Girmaw Medfu Takelle; Mamaru Melkam; Asnake Tadesse Abate; Yilkal Abebaw Wassie; Tekletsadik Tekleslassie Alemayehu; Gebremariam Wulie Geremew; Eshetie Andargie Dires; Techilo Tinsae; Setegn Fentahun; Girum Nakie (2024). Extracted excel spreadsheet data of included studies on HIV-related perceived stigma among people living with HIV/AIDS in Africa. [Dataset]. http://doi.org/10.1371/journal.pone.0309231.s004
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 23, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Gebresilassie Tadesse; Gidey Rtbey; Fantahun Andualem; Girmaw Medfu Takelle; Mamaru Melkam; Asnake Tadesse Abate; Yilkal Abebaw Wassie; Tekletsadik Tekleslassie Alemayehu; Gebremariam Wulie Geremew; Eshetie Andargie Dires; Techilo Tinsae; Setegn Fentahun; Girum Nakie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Extracted excel spreadsheet data of included studies on HIV-related perceived stigma among people living with HIV/AIDS in Africa.

  11. New 1000 Sales Records Data 2

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Calvin Oko Mensah (2023). New 1000 Sales Records Data 2 [Dataset]. https://www.kaggle.com/datasets/calvinokomensah/new-1000-sales-records-data-2
    Explore at:
    zip(49305 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    Calvin Oko Mensah
    Description

    This is a dataset downloaded off excelbianalytics.com created off of random VBA logic. I recently performed an extensive exploratory data analysis on it and I included new columns to it, namely: Unit margin, Order year, Order month, Order weekday and Order_Ship_Days which I think can help with analysis on the data. I shared it because I thought it was a great dataset to practice analytical processes on for newbies like myself.

  12. a

    South Fork Cherry River Water Quality

    • conservation-abra.hub.arcgis.com
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny-Blue Ridge Alliance (2023). South Fork Cherry River Water Quality [Dataset]. https://conservation-abra.hub.arcgis.com/maps/3b366a6bc44e4392847b71ec82038173
    Explore at:
    Dataset updated
    Feb 22, 2023
    Dataset authored and provided by
    Allegheny-Blue Ridge Alliance
    Area covered
    Description

    Purpose:This feature layer describes water quality sampling data performed at several operating coal mines in the South Fork of Cherry watershed, West Virginia.Source & Data:Data was downloaded from WV Department of Environmental Protection's ApplicationXtender online database and EPA's ECHO online database between January and April, 2023.There are five data sets here: Surface Water Monitoring Sites, which contains basic information about monitoring sites (name, lat/long, etc.) and NPDES Outlet Monitoring Sites, which contains similar information about outfall discharges surrounding the active mines. Biological Assessment Stations (BAS) contain similar information for pre-project biological sampling. NOV Summary contains locations of Notices of Violation received by South Fork Coal Company from WV Department of Environmental Protection. The Quarterly Monitoring Reports table contains the sampling data for the Surface Water Monitoring Sites, which actually goes as far back as 2018 for some mines. Parameters of concern include iron, aluminum and selenium, among others.A relationship class between Surface Water Monitoring Sites and the Quarterly Monitoring Reports allows access to individual sample results.Processing:Notices of Violation were obtained from the WV DEP AppXtender database for Mining and Reclamation Article 3 (SMCRA) Permitting, and Mining and Reclamation NPDES Permitting. Violation data were entered into Excel and loaded into ArcGIS Pro as a CSV text file with Lat/Long coordinates for each Violation. The CSV file was converted to a point feature class.Water quality data were downloaded in PDF format from the WVDEP AppXtender website. Non-searchable PDFs were converted via Optical Character Recognition, so that data could be copied. Sample results were copied and pasted manually to Notepad++, and several columns were re-ordered. Data was grouped by sample station and sorted chronologically. Sample data, contained in the associated table (SW_QM_Reports) were linked back to the monitoring station locations using the Station_ID text field in a geodatabase relationship class.Water monitoring station locations were taken from published Drainage Maps and from water quality reports. A CSV table was created with station Lat/Long locations and loaded into ArcGIS Pro. It was then converted to a point feature class.Stream Crossings and Road Construction Areas were digitized as polygon feature classes from project Drainage and Progress maps that were converted to TIFF image format from PDF and georeferenced.The ArcGIS Pro map - South Fork Cherry River Water Quality, was published as a service definition to ArcGIS Online.Symbology:NOV Summary - dark blue, solid pointLost Flats Surface Water Monitoring Sites: Data Available - medium blue point, black outlineLost Flats Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineLost Flats NPDES Outlet Monitoring Sites - orange point, black outlineBlue Knob Surface Water Monitoring Sites: Data Available - medium blue point, black outlineBlue Knob Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineBlue Knob NPDES Outlet Monitoring Sites - orange point, black outlineBlue Knob Biological Assessment Stations: Data Available - medium green point, black outlineBlue Knob Biological Assessment Stations: No Data Available - no-fill point, thick medium green outlineRocky Run Surface Water Monitoring Sites: Data Available - medium blue point, black outlineRocky Run Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineRocky Run NPDES Outlet Monitoring Sites - orange point, black outlineRocky Run Biological Assessment Stations: Data Available - medium green point, black outlineRocky Run Biological Assessment Stations: No Data Available - no-fill point, thick medium green outlineRocky Run Stream Crossings: turquoise blue polygon with red outlineRocky Run Haul Road Construction Areas: dark red (40% transparent) polygon with black outlineHaul Road No 2 Surface Water Monitoring Sites: Data Available - medium blue point, black outlineHaul Road No 2 Surface Water Monitoring Sites: No Data Available - no-fill point, thick medium blue outlineHaul Road No 2 NPDES Outlet Monitoring Sites - orange point, black outline

  13. E-Commerce Data

    • kaggle.com
    zip
    Updated Aug 17, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carrie (2017). E-Commerce Data [Dataset]. https://www.kaggle.com/datasets/carrie1/ecommerce-data
    Explore at:
    zip(7548686 bytes)Available download formats
    Dataset updated
    Aug 17, 2017
    Authors
    Carrie
    Description

    Context

    Typically e-commerce datasets are proprietary and consequently hard to find among publicly available data. However, The UCI Machine Learning Repository has made this dataset containing actual transactions from 2010 and 2011. The dataset is maintained on their site, where it can be found by the title "Online Retail".

    Content

    "This is a transnational data set which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail.The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers."

    Acknowledgements

    Per the UCI Machine Learning Repository, this data was made available by Dr Daqing Chen, Director: Public Analytics group. chend '@' lsbu.ac.uk, School of Engineering, London South Bank University, London SE1 0AA, UK.

    Image from stocksnap.io.

    Inspiration

    Analyses for this dataset could include time series, clustering, classification and more.

  14. Ecommerce Store Data | APAC E-commerce Sector | Verified Business Profiles...

    • datarade.ai
    Updated Jan 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Ecommerce Store Data | APAC E-commerce Sector | Verified Business Profiles with Key Insights | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/ecommerce-store-data-apac-e-commerce-sector-verified-busi-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Area covered
    Andorra, Fiji, Korea (Democratic People's Republic of), Italy, Mexico, Lao People's Democratic Republic, Malta, Austria, Canada, Northern Mariana Islands
    Description

    Success.ai’s Ecommerce Store Data for the APAC E-commerce Sector provides a reliable and accurate dataset tailored for businesses aiming to connect with e-commerce professionals and organizations across the Asia-Pacific region. Covering roles and businesses involved in online retail, marketplace management, logistics, and digital commerce, this dataset includes verified business profiles, decision-maker contact details, and actionable insights.

    With access to continuously updated, AI-validated data and over 700 million global profiles, Success.ai ensures your outreach, market analysis, and partnership strategies are effective and data-driven. Backed by our Best Price Guarantee, this solution helps you excel in one of the world’s fastest-growing e-commerce markets.

    Why Choose Success.ai’s Ecommerce Store Data?

    1. Verified Profiles for Precision Engagement

      • Access verified profiles, business locations, employee counts, and decision-maker details for e-commerce businesses across APAC.
      • AI-driven validation ensures 99% accuracy, improving engagement rates and reducing outreach inefficiencies.
    2. Comprehensive Coverage of the APAC E-commerce Sector

      • Includes businesses from major e-commerce hubs such as China, India, Japan, South Korea, Australia, and Southeast Asia.
      • Gain insights into regional e-commerce trends, digital transformation efforts, and logistics innovations.
    3. Continuously Updated Datasets

      • Real-time updates ensure that business profiles, employee roles, and operational insights remain accurate and relevant.
      • Stay aligned with dynamic market conditions and emerging opportunities in the APAC region.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, ensuring responsible and lawful data usage.

    Data Highlights:

    • 700M+ Verified Global Profiles: Access business profiles for e-commerce professionals and organizations across APAC.
    • Firmographic Insights: Gain detailed information, including business locations, employee counts, and operational details.
    • Decision-maker Profiles: Connect with key e-commerce leaders, managers, and strategists driving online retail innovation.
    • Industry Trends: Understand emerging e-commerce trends, consumer behavior, and market dynamics in the APAC region.

    Key Features of the Dataset:

    1. Comprehensive E-commerce Business Profiles

      • Identify and connect with businesses specializing in online retail, marketplace management, and digital commerce logistics.
      • Target decision-makers involved in supply chain optimization, digital marketing, and platform development.
    2. Advanced Filters for Precision Campaigns

      • Filter businesses and professionals by industry focus (fashion, electronics, grocery), geographic location, or employee size.
      • Tailor campaigns to address specific goals, such as promoting technology adoption, enhancing customer engagement, or expanding supply chains.
    3. Regional and Sector-specific Insights

      • Leverage data on APAC’s fast-growing e-commerce markets, consumer purchasing trends, and regional challenges.
      • Refine your marketing strategies and outreach efforts to align with market priorities.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data allow for personalized messaging, highlight unique value propositions, and improve engagement outcomes.

    Strategic Use Cases:

    1. Marketing Campaigns and Outreach

      • Promote e-commerce solutions, logistics services, or digital commerce tools to businesses and professionals in the APAC region.
      • Use verified contact data for multi-channel outreach, including email, phone, and social media campaigns.
    2. Partnership Development and Vendor Collaboration

      • Build relationships with e-commerce marketplaces, logistics providers, and payment solution companies seeking strategic partnerships.
      • Foster collaborations that drive operational efficiency, enhance customer experiences, or expand market reach.
    3. Market Research and Competitive Analysis

      • Analyze regional e-commerce trends, consumer preferences, and logistics challenges to refine product offerings and business strategies.
      • Benchmark against competitors to identify growth opportunities and high-demand solutions.
    4. Recruitment and Talent Acquisition

      • Target HR professionals and hiring managers in the e-commerce industry recruiting for roles in operations, logistics, and digital marketing.
      • Provide workforce optimization platforms or training solutions tailored to the digital commerce sector.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality e-commerce store data at competitive prices, ensuring strong ROI for your marketing, sales, and strategic initiatives.
    2. Seamless Integration

      • Integrate verified e-commerce data into CRM systems, analytics platforms, or market...
  15. Massive Bank dataset ( 1 Million+ rows)

    • kaggle.com
    zip
    Updated Feb 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K S ABISHEK (2023). Massive Bank dataset ( 1 Million+ rows) [Dataset]. https://www.kaggle.com/datasets/ksabishek/massive-bank-dataset-1-million-rows
    Explore at:
    zip(32471013 bytes)Available download formats
    Dataset updated
    Feb 21, 2023
    Authors
    K S ABISHEK
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Greetings , fellow analysts !

    (NOTE : This is a random dataset generated using python. It bears no resemblance to any real entity in the corporate world. Any resemblance is a matter of coincidence.)

    REC-SSEC Bank is a govt-aided bank operating in the Indian Peninsula. They have regional branches in over 40+ regions of the country. You have been provided with a massive excel sheet containing the transaction details, the total transaction amount and their location and total transaction count.

    The dataset is described as follows :

    1. Date - The date on which the transaction took place. 2.Domain - Where or which type of Business entity made the transaction. 3.Location - Where the data is collected from 4.Value - Total value of transaction
    2. Count of transaction .

    For example , in the very first row , the data can be read as : " On the first of January, 2022 , 1932 transactions of summing upto INR 365554 from Bhuj were reported " NOTE : There are about 2750 transactions every single day. All of this has been given to you.

    The bank wants you to answer the following questions :

    1. What is the average transaction value everyday for each domain over the year.
    2. What is the average transaction value for every city/location over the year
    3. The bank CEO , Mr: Hariharan , wants to promote the ease of transaction for the highest active domain. If the domains could be sorted into a priority, what would be the priority list ?
    4. What's the average transaction count for each city ?
  16. d

    City of Tempe 2022 Community Survey Data

    • catalog.data.gov
    • performance.tempe.gov
    • +10more
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). City of Tempe 2022 Community Survey Data [Dataset]. https://catalog.data.gov/dataset/city-of-tempe-2022-community-survey-data
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    Description and PurposeThese data include the individual responses for the City of Tempe Annual Community Survey conducted by ETC Institute. These data help determine priorities for the community as part of the City's on-going strategic planning process. Averaged Community Survey results are used as indicators for several city performance measures. The summary data for each performance measure is provided as an open dataset for that measure (separate from this dataset). The performance measures with indicators from the survey include the following (as of 2022):1. Safe and Secure Communities1.04 Fire Services Satisfaction1.06 Crime Reporting1.07 Police Services Satisfaction1.09 Victim of Crime1.10 Worry About Being a Victim1.11 Feeling Safe in City Facilities1.23 Feeling of Safety in Parks2. Strong Community Connections2.02 Customer Service Satisfaction2.04 City Website Satisfaction2.05 Online Services Satisfaction Rate2.15 Feeling Invited to Participate in City Decisions2.21 Satisfaction with Availability of City Information3. Quality of Life3.16 City Recreation, Arts, and Cultural Centers3.17 Community Services Programs3.19 Value of Special Events3.23 Right of Way Landscape Maintenance3.36 Quality of City Services4. Sustainable Growth & DevelopmentNo Performance Measures in this category presently relate directly to the Community Survey5. Financial Stability & VitalityNo Performance Measures in this category presently relate directly to the Community SurveyMethodsThe survey is mailed to a random sample of households in the City of Tempe. Follow up emails and texts are also sent to encourage participation. A link to the survey is provided with each communication. To prevent people who do not live in Tempe or who were not selected as part of the random sample from completing the survey, everyone who completed the survey was required to provide their address. These addresses were then matched to those used for the random representative sample. If the respondent’s address did not match, the response was not used. To better understand how services are being delivered across the city, individual results were mapped to determine overall distribution across the city. Additionally, demographic data were used to monitor the distribution of responses to ensure the responding population of each survey is representative of city population. Processing and LimitationsThe location data in this dataset is generalized to the block level to protect privacy. This means that only the first two digits of an address are used to map the location. When they data are shared with the city only the latitude/longitude of the block level address points are provided. This results in points that overlap. In order to better visualize the data, overlapping points were randomly dispersed to remove overlap. The result of these two adjustments ensure that they are not related to a specific address, but are still close enough to allow insights about service delivery in different areas of the city. This data is the weighted data provided by the ETC Institute, which is used in the final published PDF report.The 2022 Annual Community Survey report is available on data.tempe.gov. The individual survey questions as well as the definition of the response scale (for example, 1 means “very dissatisfied” and 5 means “very satisfied”) are provided in the data dictionary.Additional InformationSource: Community Attitude SurveyContact (author): Wydale HolmesContact E-Mail (author): wydale_holmes@tempe.govContact (maintainer): Wydale HolmesContact E-Mail (maintainer): wydale_holmes@tempe.govData Source Type: Excel tablePreparation Method: Data received from vendor after report is completedPublish Frequency: AnnualPublish Method: ManualData Dictionary

  17. g

    Employee Vehicle Personal Use 2020 (Excel)

    • opendata.greatersudbury.ca
    • hub.arcgis.com
    Updated Aug 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Greater Sudbury (2020). Employee Vehicle Personal Use 2020 (Excel) [Dataset]. https://opendata.greatersudbury.ca/documents/8ad1b3ec2c254d06af9db35db0f6b6a7
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset authored and provided by
    City of Greater Sudbury
    Description

    Download Employee Vehicle Personal Use Excel SheetThis dataset lists the employee name and taxable benefit for personal use of City of Greater Sudbury Vehicle as travel expenses for the year 2020. Expenses are broken down in separate tabs by Quarter (Q1, Q2, Q3 and Q4). Data for other years is available in separate datasets. Updated quarterly when expenses are prepared.

  18. Taking Part 2010/11 quarter 4: Statistical release

    • gov.uk
    Updated Aug 9, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Digital, Culture, Media & Sport (2011). Taking Part 2010/11 quarter 4: Statistical release [Dataset]. https://www.gov.uk/government/statistics/taking-part-the-national-survey-of-culture-leisure-and-sport-2010-11
    Explore at:
    Dataset updated
    Aug 9, 2011
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Digital, Culture, Media & Sport
    Description

    The latest estimates from the 2010/11 Taking Part adult survey produced by DCMS were released on 30 June 2011 according to the arrangements approved by the UK Statistics Authority.

    Released:

    30 June 2011
    **

    Period covered:

    April 2010 to April 2011
    **

    Geographic coverage:

    National and Regional level data for England.
    **

    Next release date:

    Further analysis of the 2010/11 adult dataset and data for child participation will be published on 18 August 2011.

    Summary

    The latest data from the 2010/11 Taking Part survey provides reliable national estimates of adult engagement with sport, libraries, the arts, heritage and museums & galleries. This release also presents analysis on volunteering and digital participation in our sectors and a look at cycling and swimming proficiency in England. The Taking Part survey is a continuous annual survey of adults and children living in private households in England, and carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.

    Statistical Report

    Statistical Worksheets

    These spreadsheets contain the data and sample sizes for each sector included in the survey:

    Previous release

    The previous Taking Part release was published on 31 March 2011 and can be found online.

    The UK Statistics Authority

    This release is published in accordance with the Code of Practice for Official Statistics (2009), as produced by the http://www.statisticsauthority.gov.uk/">UK Statistics Authority (UKSA). The UKSA has the overall objective of promoting and safeguarding the production and publication of official statistics that serve the public good. It monitors and reports on all official statistics, and promotes good practice in this area.

    Pre-release access

    The document below contains a list of Ministers and Officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.

    The responsible statistician for this release is Neil Wilson. For any queries please contact the Taking Part team on 020 7211 6968 or takingpart@culture.gsi.gov.uk.

    Releated information

  19. Egger’s test of HIV- related internalized stigma among people living with...

    • plos.figshare.com
    xls
    Updated Oct 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gebresilassie Tadesse; Gidey Rtbey; Fantahun Andualem; Girmaw Medfu Takelle; Mamaru Melkam; Asnake Tadesse Abate; Yilkal Abebaw Wassie; Tekletsadik Tekleslassie Alemayehu; Gebremariam Wulie Geremew; Eshetie Andargie Dires; Techilo Tinsae; Setegn Fentahun; Girum Nakie (2024). Egger’s test of HIV- related internalized stigma among people living with HIV/AIDS in Africa. [Dataset]. http://doi.org/10.1371/journal.pone.0309231.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 23, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Gebresilassie Tadesse; Gidey Rtbey; Fantahun Andualem; Girmaw Medfu Takelle; Mamaru Melkam; Asnake Tadesse Abate; Yilkal Abebaw Wassie; Tekletsadik Tekleslassie Alemayehu; Gebremariam Wulie Geremew; Eshetie Andargie Dires; Techilo Tinsae; Setegn Fentahun; Girum Nakie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    Egger’s test of HIV- related internalized stigma among people living with HIV/AIDS in Africa.

  20. d

    Millions of POI locations for 2000+ companies updated weekly

    • datarade.ai
    Updated Apr 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scrapehero (2023). Millions of POI locations for 2000+ companies updated weekly [Dataset]. https://datarade.ai/data-products/millions-of-poi-locations-for-1600-companies-updated-weekly-scrapehero
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Apr 10, 2023
    Dataset authored and provided by
    Scrapehero
    Area covered
    United Kingdom, United States
    Description

    https://store.scrapehero.com

    Location Data High quality retail store, hotel, car dealer, gas stations locations and other points of interest Download millions of accurate, verified, updated and affordable Points of Interest (POI) and locations instantly as an Excel spreadsheet

    Accurate The datasets we provide undergo at least 10 stringent quality checks before we publish them

    Updated We have one of the best update cycles in the industry. Most datasets are updated weekly

    Instant Download the data instantly from our website for immediate use in your projects or use it as an API feed to integrate it with your applications

    We have the best pricing online Shop around, we are certain you will not find better pricing for the latest location data anywhere online. We also have subscriptions available for getting unlimited updated data weekly

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Pinky Verma (2023). Excel dataset [Dataset]. https://www.kaggle.com/datasets/pinkyverma0256/excel-dataset
Organization logo

Excel dataset

Explore at:
zip(13123 bytes)Available download formats
Dataset updated
Jun 29, 2023
Authors
Pinky Verma
Description

Dataset

This dataset was created by Pinky Verma

Contents

Search
Clear search
Close search
Google apps
Main menu