49 datasets found
  1. Annual Fed funds effective rate in the U.S. 1990-2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Annual Fed funds effective rate in the U.S. 1990-2024 [Dataset]. https://www.statista.com/statistics/247941/federal-funds-rate-level-in-the-united-states/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. federal funds rate peaked in 2023 at its highest level since the 2007-08 financial crisis, reaching 5.33 percent by December 2023. A significant shift in monetary policy occurred in the second half of 2024, with the Federal Reserve implementing regular rate cuts. By December 2024, the rate had declined to 4.48 percent. What is a central bank rate? The federal funds rate determines the cost of overnight borrowing between banks, allowing them to maintain necessary cash reserves and ensure financial system liquidity. When this rate rises, banks become more inclined to hold rather than lend money, reducing the money supply. While this decreased lending slows economic activity, it helps control inflation by limiting the circulation of money in the economy. Historic perspective The federal funds rate historically follows cyclical patterns, falling during recessions and gradually rising during economic recoveries. Some central banks, notably the European Central Bank, went beyond traditional monetary policy by implementing both aggressive asset purchases and negative interest rates.

  2. US Recession Dataset

    • kaggle.com
    zip
    Updated May 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubhaansh Kumar (2023). US Recession Dataset [Dataset]. https://www.kaggle.com/datasets/shubhaanshkumar/us-recession-dataset
    Explore at:
    zip(39062 bytes)Available download formats
    Dataset updated
    May 14, 2023
    Authors
    Shubhaansh Kumar
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Area covered
    United States
    Description

    This dataset includes various economic indicators such as stock market performance, inflation rates, GDP, interest rates, employment data, and housing index, all of which are crucial for understanding the state of the economy. By analysing this dataset, one can gain insights into the causes and effects of past recessions in the US, which can inform investment decisions and policy-making.

    There are 20 columns and 343 rows spanning 1990-04 to 2022-10

    The columns are:

    1. Price: Price column refers to the S&P 500 lot price over the years. The S&P 500 is a stock market index that measures the performance of 500 large companies listed on stock exchanges in the United States. This variable represents the value of the S&P 500 index from 1980 to present. Industrial Production: This variable measures the output of industrial establishments in the manufacturing, mining, and utilities sectors. It reflects the overall health of the manufacturing industry, which is a key component of the US economy.

    2. INDPRO: Industrial production measures the output of the manufacturing, mining, and utility sectors of the economy. It provides insights into the overall health of the economy, as a decline in industrial production can indicate a slowdown in economic activity. This data can be used by policymakers and investors to assess the state of the economy and make informed decisions.

    3. CPI: CPI stands for Consumer Price Index, which measures the change in the prices of a basket of goods and services that consumers purchase. CPI inflation represents the rate at which the prices of goods and services in the economy are increasing.

    4. Treasure Bill rate (3 month to 30 Years): Treasury bills (T-bills) are short-term debt securities issued by the US government. This variable represents the interest rates on T-bills with maturities ranging from 3 months to 30 years. It reflects the cost of borrowing money for the government and provides an indication of the overall level of interest rates in the economy.

    5. GDP: GDP stands for Gross Domestic Product, which is the value of all goods and services produced in a country. This dataset is taking into account only the Nominal GDP values. Nominal GDP represents the total value of goods and services produced in the US economy without accounting for inflation.

    6. Rate: The Federal Funds Rate is the interest rate at which depository institutions lend reserve balances to other depository institutions overnight. It is set by the Federal Reserve and is used as a tool to regulate the money supply in the economy.

    7. BBK_Index: The BBKI are maintained and produced by the Indiana Business Research Center at the Kelley School of Business at Indiana University. The BBK Coincident and Leading Indexes and Monthly GDP Growth for the U.S. are constructed from a collapsed dynamic factor analysis of a panel of 490 monthly measures of real economic activity and quarterly real GDP growth. The BBK Leading Index is the leading subcomponent of the cycle measured in standard deviation units from trend real GDP growth.

    8. Housing Index: This variable represents the value of the housing market in the US. It is calculated based on the prices of homes sold in the market and provides an indication of the overall health of the housing market.

    9. Recession binary column: This variable is a binary indicator that takes a value of 1 when the US economy is in a recession and 0 otherwise. It is based on the official business cycle dates provided by the National Bureau of Economic Research.

  3. Monthly bank rate in the UK 2012-2025

    • statista.com
    Updated Nov 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly bank rate in the UK 2012-2025 [Dataset]. https://www.statista.com/statistics/889792/united-kingdom-uk-bank-base-rate/
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2012 - Oct 2025
    Area covered
    United Kingdom
    Description

    August 2024 marked a significant shift in the UK's monetary policy, as it saw the first reduction in the official bank base interest rate since August 2023. This change came after a period of consistent rate hikes that began in late 2021. In a bid to minimize the economic effects of the COVID-19 pandemic, the Bank of England cut the official bank base rate in March 2020 to a record low of *** percent. This historic low came just one week after the Bank of England cut rates from **** percent to **** percent in a bid to prevent mass job cuts in the United Kingdom. It remained at *** percent until December 2021 and was increased to one percent in May 2022 and to **** percent in October 2022. After that, the bank rate increased almost on a monthly basis, reaching **** percent in August 2023. It wasn't until August 2024 that the first rate decrease since the previous year occurred, signaling a potential shift in monetary policy. Why do central banks adjust interest rates? Central banks, including the Bank of England, adjust interest rates to manage economic stability and control inflation. Their strategies involve a delicate balance between two main approaches. When central banks raise interest rates, their goal is to cool down an overheated economy. Higher rates curb excessive spending and borrowing, which helps to prevent runaway inflation. This approach is typically used when the economy is growing too quickly or when inflation is rising above desired levels. Conversely, when central banks lower interest rates, they aim to encourage borrowing and investment. This strategy is employed to stimulate economic growth during periods of slowdown or recession. Lower rates make it cheaper for businesses and individuals to borrow money, which can lead to increased spending and investment. This dual approach allows central banks to maintain a balance between promoting growth and controlling inflation, ensuring long-term economic stability. Additionally, adjusting interest rates can influence currency values, impacting international trade and investment flows, further underscoring their critical role in a nation's economic health. Recent interest rate trends Between 2021 and 2025, most advanced and emerging economies experienced a period of regular interest rate hikes. This trend was driven by several factors, including persistent supply chain disruptions, high energy prices, and robust demand pressures. These elements combined to create significant inflationary trends, prompting central banks to raise rates to temper spending and borrowing. However, in 2024, a shift began to occur in global monetary policy. The European Central Bank (ECB) was among the first major central banks to reverse this trend by cutting interest rates. This move signaled a change in approach aimed at addressing growing economic slowdowns and supporting growth.

  4. Quarterly mortgage interest rate in the U.S. 2019-2024, by mortgage type

    • statista.com
    Updated Nov 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Quarterly mortgage interest rate in the U.S. 2019-2024, by mortgage type [Dataset]. https://www.statista.com/topics/10405/us-banking-industry-during-recessions/
    Explore at:
    Dataset updated
    Nov 19, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In the United States, interest rates for all mortgage types started to increase in 2021. This was due to the Federal Reserve introducing a series of hikes in the federal funds rate to contain the rising inflation. In the fourth quarter of 2024, the 30-year fixed rate rose slightly, to 6.63 percent. Despite the increase, the rate remained below the peak of 7.33 percent in the same quarter a year ago. Why have U.S. home sales decreased? Cheaper mortgages normally encourage consumers to buy homes, while higher borrowing costs have the opposite effect. As interest rates increased in 2022, the number of existing homes sold plummeted. Soaring house prices over the past 10 years have further affected housing affordability. Between 2013 and 2023, the median price of an existing single-family home risen by about 88 percent. On the other hand, the median weekly earnings have risen much slower. Comparing mortgage terms and rates Between 2008 and 2023, the average rate on a 15-year fixed-rate mortgage in the United States stood between 2.28 and 6.11 percent. Over the same period, a 30-year mortgage term averaged a fixed-rate of between 3.08 and 6.81 percent. Rates on 15-year loan terms are lower to encourage a quicker repayment, which helps to improve a homeowner’s equity.

  5. Data from: Recession Probabilities

    • clevelandfed.org
    Updated Aug 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2016). Recession Probabilities [Dataset]. https://www.clevelandfed.org/publications/economic-commentary/2016/ec-201609-recession-probabilities
    Explore at:
    Dataset updated
    Aug 23, 2016
    Dataset authored and provided by
    Federal Reserve Bank of Clevelandhttps://www.clevelandfed.org/
    Description

    Statistical models that estimate 12-month-ahead recession probabilities using the term spread have been around for many years. However, the reliability of the term spread as a predictor may have been affected by short-term interest rates being at zero. At the zero lower bound, long-term yields cannot go too far into negative territory due to the portfolio constraints of institutional investors. Therefore, the yield curve may not invert when it should or as much as it should despite the anticipated path of the economy. I enhance the simple model with two variables that should have predictive power for recessions.

  6. c

    Low Interest Rates and the Predictive Content of the Yield Curve

    • clevelandfed.org
    Updated Dec 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2021). Low Interest Rates and the Predictive Content of the Yield Curve [Dataset]. https://www.clevelandfed.org/publications/working-paper/2021/wp-2024r-low-interest-rates-and-the-predictive-content-of-the-yield-curve
    Explore at:
    Dataset updated
    Dec 20, 2021
    Dataset authored and provided by
    Federal Reserve Bank of Cleveland
    Description

    Does the yield curve's ability to predict future output and recessions differ when interest rates and inflation are low, as in the current global environment? We explore the issue using historical data going back to the 19th century for the US. This paper is similar in spirit to Ramey and Zubairy (2018), who look at the government spending multiplier in times of low interest rates. If anything, the yield curve tends to predict output growth better in low interest rate environments, though this result is stronger for RGDP than for IP.

  7. TA:TSX Stock: Are We Headed for a Recession? (Forecast)

    • kappasignal.com
    Updated Aug 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). TA:TSX Stock: Are We Headed for a Recession? (Forecast) [Dataset]. https://www.kappasignal.com/2023/08/tatsx-stock-are-we-headed-for-recession.html
    Explore at:
    Dataset updated
    Aug 22, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    TA:TSX Stock: Are We Headed for a Recession?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. c

    Rising Interest Rate Risk at U.S. Banks

    • clevelandfed.org
    Updated Jun 24, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2014). Rising Interest Rate Risk at U.S. Banks [Dataset]. https://www.clevelandfed.org/publications/economic-commentary/2014/ec-201412-rising-interest-rate-risk-at-us-banks
    Explore at:
    Dataset updated
    Jun 24, 2014
    Dataset authored and provided by
    Federal Reserve Bank of Cleveland
    Area covered
    United States
    Description

    Average interest rate risk in the banking system has been increasing since the end of the financial crisis and is almost back to its pre-recession level. But the increase has not occurred uniformly at large and small banks. At big banks, risk, while increasing, hasn’t yet reached its pre-recession high. It’s in small banks where we see a steep rise in interest rate risk. The big banks’ exposure is being driven mainly by their liabilities. At small banks, it is coming from both their assets and liabilities.

  9. Volcker Shock: federal funds, unemployment and inflation rates 1979-1987

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Volcker Shock: federal funds, unemployment and inflation rates 1979-1987 [Dataset]. https://www.statista.com/statistics/1338105/volcker-shock-interest-rates-unemployment-inflation/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1979 - 1987
    Area covered
    United States
    Description

    The Volcker Shock was a period of historically high interest rates precipitated by Federal Reserve Chairperson Paul Volcker's decision to raise the central bank's key interest rate, the Fed funds effective rate, during the first three years of his term. Volcker was appointed chairperson of the Fed in August 1979 by President Jimmy Carter, as replacement for William Miller, who Carter had made his treasury secretary. Volcker was one of the most hawkish (supportive of tighter monetary policy to stem inflation) members of the Federal Reserve's committee, and quickly set about changing the course of monetary policy in the U.S. in order to quell inflation. The Volcker Shock is remembered for bringing an end to over a decade of high inflation in the United States, prompting a deep recession and high unemployment, and for spurring on debt defaults among developing countries in Latin America who had borrowed in U.S. dollars.

    Monetary tightening and the recessions of the early '80s

    Beginning in October 1979, Volcker's Fed tightened monetary policy by raising interest rates. This decision had the effect of depressing demand and slowing down the U.S. economy, as credit became more expensive for households and businesses. The Fed funds rate, the key overnight rate at which banks lend their excess reserves to each other, rose as high as 17.6 percent in early 1980. The rate was allowed to fall back below 10 percent following this first peak, however, due to worries that inflation was not falling fast enough, a second cycle of monetary tightening was embarked upon starting in August of 1980. The rate would reach its all-time peak in June of 1981, at 19.1 percent. The second recession sparked by these hikes was far deeper than the 1980 recession, with unemployment peaking at 10.8 percent in December 1980, the highest level since The Great Depression. This recession would drive inflation to a low point during Volcker's terms of 2.5 percent in August 1983.

    The legacy of the Volcker Shock

    By the end of Volcker's terms as Fed Chair, inflation was at a manageable rate of around four percent, while unemployment had fallen under six percent, as the economy grew and business confidence returned. While supporters of Volcker's actions point to these numbers as proof of the efficacy of his actions, critics have claimed that there were less harmful ways that inflation could have been brought under control. The recessions of the early 1980s are cited as accelerating deindustrialization in the U.S., as manufacturing jobs lost in 'rust belt' states such as Michigan, Ohio, and Pennsylvania never returned during the years of recovery. The Volcker Shock was also a driving factor behind the Latin American debt crises of the 1980s, as governments in the region defaulted on debts which they had incurred in U.S. dollars. Debates about the validity of using interest rate hikes to get inflation under control have recently re-emerged due to the inflationary pressures facing the U.S. following the Coronavirus pandemic and the Federal Reserve's subsequent decision to embark on a course of monetary tightening.

  10. o

    Replication data for: Default Risk and Income Fluctuations in Emerging...

    • openicpsr.org
    Updated Jun 1, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cristina Arellano (2008). Replication data for: Default Risk and Income Fluctuations in Emerging Economies [Dataset]. http://doi.org/10.3886/E113248V1
    Explore at:
    Dataset updated
    Jun 1, 2008
    Dataset provided by
    American Economic Association
    Authors
    Cristina Arellano
    Description

    Recent sovereign defaults are accompanied by interest rate spikes and deep recessions. This paper develops a small open economy model to study default risk and its interaction with output and foreign debt. Default probabilities and interest rates depend on incentives for repayment. Default is more likely in recessions because this is when it is more costly for a risk averse borrower to repay noncontingent debt. The model closely matches business cycles in Argentina predicting high volatility of interest rates, higher volatility of consumption relative to output, and negative correlations of output with interest rates and the trade balance.

  11. Replication data for: Understanding the Great Recession

    • openicpsr.org
    Updated Jan 1, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrence J. Christiano; Martin S. Eichenbaum; Mathias Trabandt (2015). Replication data for: Understanding the Great Recession [Dataset]. http://doi.org/10.3886/E114095V1
    Explore at:
    Dataset updated
    Jan 1, 2015
    Dataset provided by
    American Economic Associationhttp://www.aeaweb.org/
    Authors
    Lawrence J. Christiano; Martin S. Eichenbaum; Mathias Trabandt
    Description

    We argue that the vast bulk of movements in aggregate real economic activity during the Great Recession were due to financial frictions. We reach this conclusion by looking through the lens of an estimated New Keynesian model in which firms face moderate degrees of price rigidities, no nominal rigidities in wages, and a binding zero lower bound constraint on the nominal interest rate. Our model does a good job of accounting for the joint behavior of labor and goods markets, as well as inflation, during the Great Recession. According to the model the observed fall in total factor productivity and the rise in the cost of working capital played critical roles in accounting for the small drop in inflation that occurred during the Great Recession. (JEL E12, E23, E24, E31, E32, E52)

  12. Great Recession: delinquency rate by loan type in the U.S. 2007-2010

    • statista.com
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Great Recession: delinquency rate by loan type in the U.S. 2007-2010 [Dataset]. https://www.statista.com/statistics/1342448/global-financial-crisis-us-economic-indicators/
    Explore at:
    Dataset updated
    Oct 28, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2007 - 2012
    Area covered
    United States
    Description

    The Global Financial Crisis of 2008-09 was a period of severe macroeconomic instability for the United States and the global economy more generally. The crisis was precipitated by the collapse of a number of financial institutions who were deeply involved in the U.S. mortgage market and associated credit markets. Beginning in the Summer of 2007, a number of banks began to report issues with increasing mortgage delinquencies and the problem of not being able to accurately price derivatives contracts which were based on bundles of these U.S. residential mortgages. By the end of 2008, U.S. financial institutions had begun to fail due to their exposure to the housing market, leading to one of the deepest recessions in the history of the United States and to extensive government bailouts of the financial sector.

    Subprime and the collapse of the U.S. mortgage market

    The early 2000s had seen explosive growth in the U.S. mortgage market, as credit became cheaper due to the Federal Reserve's decision to lower interest rates in the aftermath of the 2001 'Dot Com' Crash, as well as because of the increasing globalization of financial flows which directed funds into U.S. financial markets. Lower mortgage rates gave incentive to financial institutions to begin lending to riskier borrowers, using so-called 'subprime' loans. These were loans to borrowers with poor credit scores, who would not have met the requirements for a conventional mortgage loan. In order to hedge against the risk of these riskier loans, financial institutions began to use complex financial instruments known as derivatives, which bundled mortgage loans together and allowed the risk of default to be sold on to willing investors. This practice was supposed to remove the risk from these loans, by effectively allowing credit institutions to buy insurance against delinquencies. Due to the fraudulent practices of credit ratings agencies, however, the price of these contacts did not reflect the real risk of the loans involved. As the reality of the inability of the borrowers to repay began to kick in during 2007, the financial markets which traded these derivatives came under increasing stress and eventually led to a 'sudden stop' in trading and credit intermediation during 2008.

    Market Panic and The Great Recession

    As borrowers failed to make repayments, this had a knock-on effect among financial institutions who were highly leveraged with financial instruments based on the mortgage market. Lehman Brothers, one of the world's largest investment banks, failed on September 15th 2008, causing widespread panic in financial markets. Due to the fear of an unprecedented collapse in the financial sector which would have untold consequences for the wider economy, the U.S. government and central bank, The Fed, intervened the following day to bailout the United States' largest insurance company, AIG, and to backstop financial markets. The crisis prompted a deep recession, known colloquially as The Great Recession, drawing parallels between this period and The Great Depression. The collapse of credit intermediation in the economy lead to further issues in the real economy, as business were increasingly unable to pay back loans and were forced to lay off staff, driving unemployment to a high of almost 10 percent in 2010. While there has been criticism of the U.S. government's actions to bailout the financial institutions involved, the actions of the government and the Fed are seen by many as having prevented the crisis from spiraling into a depression of the magnitude of The Great Depression.

  13. F

    Bank Prime Loan Rate

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Bank Prime Loan Rate [Dataset]. https://fred.stlouisfed.org/series/DPRIME
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Bank Prime Loan Rate (DPRIME) from 1955-08-04 to 2025-11-28 about prime, loans, interest rate, banks, depository institutions, interest, rate, and USA.

  14. Data from: Monetary policy in Brazil in pandemic times

    • scielo.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carmem Feijó; Eliane Cristina Araújo; Luiz Carlos Bresser-Pereira (2023). Monetary policy in Brazil in pandemic times [Dataset]. http://doi.org/10.6084/m9.figshare.19965335.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Carmem Feijó; Eliane Cristina Araújo; Luiz Carlos Bresser-Pereira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    ABSTRACT The paper discusses the determination of inflation in Brazil, especially after the great recession of 2015-2016, to assess the adequacy of manipulating interest rates to control the rise in prices due to permanent cost pressure. The burden of using the interest rate to fight cost inflation is to create a highly conventional level of the real interest rate, which benefits the rentier class in a financialized economy. In the light of the post-Keynesian macroeconomics, a high-interest rate convention keeps the economy with a low growth rate and a low investment rate, which in the case of the Brazilian economy has resulted in a regression in the productive matrix and productivity stagnation, and both contribute to perpetuating cost pressures on prices. The empirical analysis corroborates the discussion about recent inflation having its origin in cost pressures over which the interest rate impact for its control is limited. We complement the empirical analysis by testing the response to the SELIC interest rate of the variables used to explain the fluctuation of market prices and administered prices: commodity price index, exchange rate and activity level. As expected, the impact of an increase in the interest rate appreciates the exchange rate, favouring inflation control and reducing the level of activity but has no impact on the commodity price index.

  15. F

    Real-time Sahm Rule Recession Indicator

    • fred.stlouisfed.org
    json
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real-time Sahm Rule Recession Indicator [Dataset]. https://fred.stlouisfed.org/series/SAHMREALTIME
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Real-time Sahm Rule Recession Indicator (SAHMREALTIME) from Dec 1959 to Sep 2025 about recession indicators, academic data, and USA.

  16. MMI Stock: Are We Headed for a Recession? (Forecast)

    • kappasignal.com
    Updated Dec 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). MMI Stock: Are We Headed for a Recession? (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/mmi-stock-are-we-headed-for-recession.html
    Explore at:
    Dataset updated
    Dec 11, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    MMI Stock: Are We Headed for a Recession?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. o

    Data and Code for: Liquidity Traps A Unified Theory of the Great Depression...

    • openicpsr.org
    delimited
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gauti B. Eggertsson; Sergey K. Egiev (2025). Data and Code for: Liquidity Traps A Unified Theory of the Great Depression and the Great Recession [Dataset]. http://doi.org/10.3886/E237322V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset provided by
    American Economic Association
    Authors
    Gauti B. Eggertsson; Sergey K. Egiev
    Time period covered
    Jan 1, 1929 - Dec 31, 1942
    Area covered
    Japan, United States
    Description

    This review of liquidity traps unifies three landmark economic downturns — the U.S. Great Depression, the Great Recession, and Japan’s Long Recession — into a single analytical framework. We examine various forces that drive natural interest rates negative: temporarily (such as banking crises and debt overhangs) or perma- nently (such as demographic shifts and inequality). When policy rates hit the zero lower bound, conventional monetary tools lose traction. Under a standard monetary policy regime, counterintuitive paradoxes emerge: greater price flexibility deepens recessions, and positive supply shocks become contractionary. We show how policy effects — including the size of fiscal multipliers, forward guidance, and these paradoxes — depend crit- ically on the monetary-fiscal regime and on central-bank credibility. The paper explains how regime changes, such as Roosevelt’s 1933 abandonment of the gold standard and balanced-budget dogmas, successfully re- versed deep slumps by credibly shifting expectations. We examine whether secular-stagnation forces are likely to assert themselves in the coming decades.

  18. Can Yield Curve Inversions Be Predicted?

    • clevelandfed.org
    Updated Jul 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Federal Reserve Bank of Cleveland (2018). Can Yield Curve Inversions Be Predicted? [Dataset]. https://www.clevelandfed.org/publications/economic-commentary/2018/ec-201806-can-yield-curve-inversions-be-predicted
    Explore at:
    Dataset updated
    Jul 16, 2018
    Dataset authored and provided by
    Federal Reserve Bank of Clevelandhttps://www.clevelandfed.org/
    Description

    An inverted Treasury yield curve—a yield curve where short-term Treasury interest rates are higher than long-term Treasury interest rates—is a good predictor of recessions. Because of this, economists and policymakers often assess the risk of a yield curve inversion when the yield curve is flattening. I study the forecastability of yield curve inversions. Professional forecasters did not predict the beginning of the yield curve inversions prior to the 1990–1991, 2001, and 2008–2009 recessions. In all three cases, professional forecasters failed to predict the magnitude of the rise in short-term interest rates. Prior to the 2008–2009 recession, forecasters also overpredicted long-term interest rates.

  19. HCNEU Stock: Are We Headed for a Recession? (Forecast)

    • kappasignal.com
    Updated Oct 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). HCNEU Stock: Are We Headed for a Recession? (Forecast) [Dataset]. https://www.kappasignal.com/2023/10/hcneu-stock-are-we-headed-for-recession.html
    Explore at:
    Dataset updated
    Oct 20, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    HCNEU Stock: Are We Headed for a Recession?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. Commercial Banks in Germany - Market Research Report (2015-2030)

    • ibisworld.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld, Commercial Banks in Germany - Market Research Report (2015-2030) [Dataset]. https://www.ibisworld.com/germany/industry/commercial-banks/625/
    Explore at:
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Time period covered
    2015 - 2030
    Area covered
    Germany
    Description

    The development of credit banks in Germany over the last five years has been strongly influenced by several factors, including the transition from a prolonged period of low interest rates to significantly higher interest rates, the COVID-19 pandemic, the war in Ukraine and the recession of recent years. Industry turnover, which is made up of the interest and commission income of credit banks, has risen by an average of 19.6% per year since 2020. The strong increase in the last five years can be attributed to the following reason: For a long time, banks did not generate significantly higher income as the European Central Bank's (ECB) key interest rate remained at 0% for a long period of time. Only the significant increase in the key interest rate to combat inflation revitalised the traditional interest margin business. This then led to significantly rising growth rates in earnings. However, IBISWorld expects the positive sales trend to weaken in 2025, even if the higher base rate level, which improves interest income, is still clearly noticeable. Industry turnover is expected to increase by 3% year-on-year to 202.4 billion euros.Banks offered loans on favourable terms due to the low interest rates that prevailed for a long time. This increased the demand for loans and the lending volume in the sector rose. In addition, digitalisation has prompted banks to rethink their business concepts, which has led to numerous branch closures over the last five years. This has led to job cuts and savings. IBISWorld expects this trend to continue in the coming years and more banks to rely on the use of modern technologies for business processing.For the period from 2025 to 2030, IBISWorld forecasts average annual sales growth of 1.8% to 221.3 billion euros. The high level of key interest rates is expected to be mitigated by slight interest rate cuts to stimulate the economy, which will have a positive impact on the earnings situation of credit banks. The hoped-for economic recovery is not yet in sight. The International Monetary Fund anticipates further weak growth in the global economy this year, which is likely to hit Germany hard in a global comparison. As a result, there is also a risk that corporate customers, who are important for the sector, will demand fewer loans.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Annual Fed funds effective rate in the U.S. 1990-2024 [Dataset]. https://www.statista.com/statistics/247941/federal-funds-rate-level-in-the-united-states/
Organization logo

Annual Fed funds effective rate in the U.S. 1990-2024

Explore at:
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The U.S. federal funds rate peaked in 2023 at its highest level since the 2007-08 financial crisis, reaching 5.33 percent by December 2023. A significant shift in monetary policy occurred in the second half of 2024, with the Federal Reserve implementing regular rate cuts. By December 2024, the rate had declined to 4.48 percent. What is a central bank rate? The federal funds rate determines the cost of overnight borrowing between banks, allowing them to maintain necessary cash reserves and ensure financial system liquidity. When this rate rises, banks become more inclined to hold rather than lend money, reducing the money supply. While this decreased lending slows economic activity, it helps control inflation by limiting the circulation of money in the economy. Historic perspective The federal funds rate historically follows cyclical patterns, falling during recessions and gradually rising during economic recoveries. Some central banks, notably the European Central Bank, went beyond traditional monetary policy by implementing both aggressive asset purchases and negative interest rates.

Search
Clear search
Close search
Google apps
Main menu