100+ datasets found
  1. ECommerce Data Analysis

    • kaggle.com
    Updated Jan 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Mohaiminul Islam (2024). ECommerce Data Analysis [Dataset]. https://www.kaggle.com/datasets/mmohaiminulislam/ecommerce-data-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    M Mohaiminul Islam
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Objectives:

    • I leveraged advanced data visualization techniques to extract valuable insights from a comprehensive dataset. By visualizing sales patterns, customer behavior, and product trends, I identified key growth opportunities and provided actionable recommendations to optimize business strategies and enhance overall performance. you can find the GitHub repo here Link to GitHub Repository.

    Data Description:

    there are exactly 6 table and 1 is a fact table and the rest of them are dimension tables: Fact Table:

    payment_key:
      Description: An identifier representing the payment transaction associated with the fact.
      Use Case: This key links to a payment dimension table, providing details about the payment method and related information.
    
    customer_key:
      Description: An identifier representing the customer associated with the fact.
      Use Case: This key links to a customer dimension table, providing details about the customer, such as name, address, and other customer-specific information.
    
    time_key:
      Description: An identifier representing the time dimension associated with the fact.
      Use Case: This key links to a time dimension table, providing details about the time of the transaction, such as date, day of the week, and month.
    
    item_key:
      Description: An identifier representing the item or product associated with the fact.
      Use Case: This key links to an item dimension table, providing details about the product, such as category, sub-category, and product name.
    
    store_key:
      Description: An identifier representing the store or location associated with the fact.
      Use Case: This key links to a store dimension table, providing details about the store, such as location, store name, and other store-specific information.
    
    quantity:
      Description: The quantity of items sold or involved in the transaction.
      Use Case: Represents the amount or number of items associated with the transaction.
    
    unit:
      Description: The unit or measurement associated with the quantity (e.g., pieces, kilograms).
      Use Case: Specifies the unit of measurement for the quantity.
    
    unit_price:
      Description: The price per unit of the item.
      Use Case: Represents the cost or price associated with each unit of the item.
    
    total_price:
      Description: The total price of the transaction, calculated as the product of quantity and unit price.
      Use Case: Represents the overall cost or revenue generated by the transaction.
    

    Customer Table: customer_key:

    Description: An identifier representing a unique customer.
    Use Case: Serves as the primary key to link with the fact table, allowing for easy and efficient retrieval of customer-specific information.
    

    name:

    Description: The name of the customer.
    Use Case: Captures the personal or business name of the customer for identification and reference purposes.
    

    contact_no:

    Description: The contact number associated with the customer.
    Use Case: Stores the phone number or contact details for communication or outreach purposes.
    

    nid:

    Description: The National ID (NID) or a unique identification number for the customer.
    

    Item Table: item_key:

    Description: An identifier representing a unique item or product.
    Use Case: Serves as the primary key to link with the fact table, enabling retrieval of detailed information about specific items in transactions.
    

    item_name:

    Description: The name or title of the item.
    Use Case: Captures the descriptive name of the item, providing a recognizable label for the product.
    

    desc:

    Description: A description of the item.
    Use Case: Contains additional details about the item, such as features, specifications, or any relevant information.
    

    unit_price:

    Description: The price per unit of the item.
    Use Case: Represents the cost or price associated with each unit of the item.
    

    man_country:

    Description: The country where the item is manufactured.
    Use Case: Captures the origin or manufacturing location of the item.
    

    supplier:

    Description: The supplier or vendor providing the item.
    Use Case: Stores the name or identifier of the supplier, facilitating tracking of item sources.
    

    unit:

    Description: The unit of measurement associated with the item (e.g., pieces, kilograms).
    

    Store Table: store_key:

    Description: An identifier representing a unique store or location.
    Use Case: Serves as the primary key to link with the fact table, allowing for easy retrieval of information about transactions associated with specific stores.
    

    division:

    Description: The administrative division or region where the store is located.
    Use Case: Captures the broader geographical area in which...
    
  2. Looker Ecommerce BigQuery Dataset

    • kaggle.com
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mustafa Keser (2024). Looker Ecommerce BigQuery Dataset [Dataset]. https://www.kaggle.com/datasets/mustafakeser4/looker-ecommerce-bigquery-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mustafa Keser
    Description

    Looker Ecommerce Dataset Description

    CSV version of Looker Ecommerce Dataset.

    Overview Dataset in BigQuery TheLook is a fictitious eCommerce clothing site developed by the Looker team. The dataset contains information >about customers, products, orders, logistics, web events and digital marketing campaigns. The contents of this >dataset are synthetic, and are provided to industry practitioners for the purpose of product discovery, testing, and >evaluation. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This >means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on >this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public >datasets.

    1. distribution_centers.csv

    • Columns:
      • id: Unique identifier for each distribution center.
      • name: Name of the distribution center.
      • latitude: Latitude coordinate of the distribution center.
      • longitude: Longitude coordinate of the distribution center.

    2. events.csv

    • Columns:
      • id: Unique identifier for each event.
      • user_id: Identifier for the user associated with the event.
      • sequence_number: Sequence number of the event.
      • session_id: Identifier for the session during which the event occurred.
      • created_at: Timestamp indicating when the event took place.
      • ip_address: IP address from which the event originated.
      • city: City where the event occurred.
      • state: State where the event occurred.
      • postal_code: Postal code of the event location.
      • browser: Web browser used during the event.
      • traffic_source: Source of the traffic leading to the event.
      • uri: Uniform Resource Identifier associated with the event.
      • event_type: Type of event recorded.

    3. inventory_items.csv

    • Columns:
      • id: Unique identifier for each inventory item.
      • product_id: Identifier for the associated product.
      • created_at: Timestamp indicating when the inventory item was created.
      • sold_at: Timestamp indicating when the item was sold.
      • cost: Cost of the inventory item.
      • product_category: Category of the associated product.
      • product_name: Name of the associated product.
      • product_brand: Brand of the associated product.
      • product_retail_price: Retail price of the associated product.
      • product_department: Department to which the product belongs.
      • product_sku: Stock Keeping Unit (SKU) of the product.
      • product_distribution_center_id: Identifier for the distribution center associated with the product.

    4. order_items.csv

    • Columns:
      • id: Unique identifier for each order item.
      • order_id: Identifier for the associated order.
      • user_id: Identifier for the user who placed the order.
      • product_id: Identifier for the associated product.
      • inventory_item_id: Identifier for the associated inventory item.
      • status: Status of the order item.
      • created_at: Timestamp indicating when the order item was created.
      • shipped_at: Timestamp indicating when the order item was shipped.
      • delivered_at: Timestamp indicating when the order item was delivered.
      • returned_at: Timestamp indicating when the order item was returned.

    5. orders.csv

    • Columns:
      • order_id: Unique identifier for each order.
      • user_id: Identifier for the user who placed the order.
      • status: Status of the order.
      • gender: Gender information of the user.
      • created_at: Timestamp indicating when the order was created.
      • returned_at: Timestamp indicating when the order was returned.
      • shipped_at: Timestamp indicating when the order was shipped.
      • delivered_at: Timestamp indicating when the order was delivered.
      • num_of_item: Number of items in the order.

    6. products.csv

    • Columns:
      • id: Unique identifier for each product.
      • cost: Cost of the product.
      • category: Category to which the product belongs.
      • name: Name of the product.
      • brand: Brand of the product.
      • retail_price: Retail price of the product.
      • department: Department to which the product belongs.
      • sku: Stock Keeping Unit (SKU) of the product.
      • distribution_center_id: Identifier for the distribution center associated with the product.

    7. users.csv

    • Columns:
      • id: Unique identifier for each user.
      • first_name: First name of the user.
      • last_name: Last name of the user.
      • email: Email address of the user.
      • age: Age of the user.
      • gender: Gender of the user.
      • state: State where t...
  3. Linear Regression E-commerce Dataset

    • kaggle.com
    zip
    Updated Sep 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Kolawale (2019). Linear Regression E-commerce Dataset [Dataset]. https://www.kaggle.com/datasets/kolawale/focusing-on-mobile-app-or-website
    Explore at:
    zip(44169 bytes)Available download formats
    Dataset updated
    Sep 16, 2019
    Authors
    Saurabh Kolawale
    Description

    This dataset is having data of customers who buys clothes online. The store offers in-store style and clothing advice sessions. Customers come in to the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.

    The company is trying to decide whether to focus their efforts on their mobile app experience or their website.

  4. E-Commerce Sales Dataset

    • kaggle.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). E-Commerce Sales Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/unlock-profits-with-e-commerce-sales-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Description

    E-Commerce Sales Dataset

    Analyzing and Maximizing Online Business Performance

    By ANil [source]

    About this dataset

    This dataset provides an in-depth look at the profitability of e-commerce sales. It contains data on a variety of sales channels, including Shiprocket and INCREFF, as well as financial information on related expenses and profits. The columns contain data such as SKU codes, design numbers, stock levels, product categories, sizes and colors. In addition to this we have included the MRPs across multiple stores like Ajio MRP , Amazon MRP , Amazon FBA MRP , Flipkart MRP , Limeroad MRP Myntra MRP and PaytmMRP along with other key parameters like amount paid by customer for the purchase , rate per piece for every individual transaction Also we have added transactional parameters like Date of sale months category fulfilledby B2b Status Qty Currency Gross amt . This is a must-have dataset for anyone trying to uncover the profitability of e-commerce sales in today's marketplace

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a comprehensive overview of e-commerce sales data from different channels covering a variety of products. Using this dataset, retailers and digital marketers can measure the performance of their campaigns more accurately and efficiently.

    The following steps help users make the most out of this dataset: - Analyze the general sales trends by examining info such as month, category, currency, stock level, and customer for each sale. This will give you an idea about how your e-commerce business is performing in each channel.
    - Review the Shiprocket and INCREF data to compare and analyze profitability via different fulfilment methods. This comparison would enable you to make better decisions towards maximizing profit while minimizing costs associated with each method’s referral fees and fulfillment rates.
    - Compare prices between various channels such as Amazon FBA MRP, Myntra MRP, Ajio MRP etc using the corresponding columns for each store (Amazon MRP etc). You can judge which stores are offering more profitable margins without compromising on quality by analyzing these pricing points in combination with other information related to product sales (TP1/TP2 - cost per piece).
    - Look at customer specific data such as TP 1/TP 2 combination wise Gross Amount or Rate info in terms price per piece or total gross amount generated by any SKU dispersed over multiple customers with relevant dates associated to track individual item performance relative to others within its category over time periods shortlisted/filtered appropriately.. Have an eye on items commonly utilized against offers or promotional discounts offered hence crafting strategies towards inventory optimization leading up-selling operations.?
    - Finally Use Overall ‘Stock’ details along all the P & L Data including Yearly Expenses_IIGF information record for takeaways which might be aimed towards essential cost cutting measures like switching amongst delivery options carefully chosen out of Shiprocket & INCREFF leadings away from manual inspections catering savings under support personnel outsourcing structures.?

    By employing a comprehensive understanding on how our internal subsidiaries perform globally unless attached respective audits may provide us remarkably lower operational costs servicing confidence; costing far lesser than being incurred taking into account entire pallet shipments tracking sheets representing current level supply chains efficiencies achieved internally., then one may finally scale profits exponentially increases cut down unseen losses followed up introducing newer marketing campaigns necessarily tailored according playing around multiple goods based spectrums due powerful backing suitable transportation boundaries set carefully

    Research Ideas

    • Analysing the difference in profitability between sales made through Shiprocket and INCREFF. This data can be used to see where the biggest profit margins lie, and strategize accordingly.
    • Examining the Complete Cost structure of a product with all its components and their contribution towards revenue or profitability, i.e., TP 1 & 2, MRP Old & Final MRP Old together with Platform based MRP - Amazon, Myntra and Paytm etc., Currency based Profit Margin etc.
    • Building a predictive model using Machine Learning by leveraging historical data to predict future sales volume and profits for e-commerce products across multiple categories/devices/platforms such as Amazon, Flipkart, Myntra etc as well providing m...
  5. G

    Retail e-commerce sales, inactive

    • open.canada.ca
    • ouvert.canada.ca
    • +1more
    csv, html, xml
    Updated Mar 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Retail e-commerce sales, inactive [Dataset]. https://open.canada.ca/data/en/dataset/0ffbe1ee-7fa7-4369-ac78-a01c8175e1a6
    Explore at:
    html, csv, xmlAvailable download formats
    Dataset updated
    Mar 24, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    This table contains 3 series, with data for years 2016 - 2017 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada); Sales (3 items: Retail trade; Electronic shopping and mail-order houses; Retail E-commerce sales).

  6. c

    E Commerce Dataset

    • cubig.ai
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). E Commerce Dataset [Dataset]. https://cubig.ai/store/products/277/e-commerce-dataset
    Explore at:
    Dataset updated
    May 25, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The E-Commerce Data Dataset contains actual transaction records from an online retail company based in the UK. It includes various transaction-related attributes such as customer ID, product information, transaction date, quantity, and country.

    2) Data Utilization (1) Characteristics of the E-Commerce Data Dataset: • This dataset is structured as time-series consumer behavior data at the transaction level. It includes attributes such as product category, quantity, unit price, and country, making it suitable for analyzing country-specific consumption patterns and developing region-based classification models.

    (2) Applications of the E-Commerce Data Dataset: • Developing country-specific marketing strategies: By analyzing purchasing trends, frequently bought product categories, and transaction frequency by country, the dataset can be used to design regionally tailored marketing strategies.

  7. Furniture E-commerce Dataset – 140K+ Product Records with Categories &...

    • crawlfeeds.com
    csv, zip
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Furniture E-commerce Dataset – 140K+ Product Records with Categories & Breadcrumbs (CSV for AI & NLP) [Dataset]. https://crawlfeeds.com/datasets/furniture-e-commerce-dataset-140k-product-records-with-categories-breadcrumbs-csv-for-ai-nlp
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 20, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This furniture e-commerce dataset includes 140,000+ structured product records collected from online retail sources. Each entry provides detailed product information, categories, and breadcrumb hierarchies, making it ideal for AI, machine learning, and analytics applications.

    Key Features:

    • 📊 140K+ furniture product records in structured format

    • 🏷 Includes categories, subcategories, and breadcrumbs for taxonomy mapping

    • 📂 Delivered as a clean CSV file for easy integration

    • 🔎 Perfect dataset for AI, NLP, and machine learning model training

    Best Use Cases:
    LLM training & fine-tuning with domain-specific data
    Product classification datasets for AI models
    Recommendation engines & personalization in e-commerce
    Market research & furniture retail analytics
    Search optimization & taxonomy enrichment

    Why this dataset?

    • Large volume (140K+ furniture records) for robust training

    • Real-world e-commerce product data

    • Ready-to-use CSV, saving preprocessing time

    • Affordable licensing with bulk discounts for enterprise buyers

    Note:
    Each record in this dataset includes both a url (main product page) and a buy_url (the actual purchase page).
    The dataset is structured so that records are based on the buy_url, ensuring you get unique, actionable product-level data instead of just generic landing pages.

  8. o

    Pakistan Largest Ecommerce Dataset - Datasets - Open Data Pakistan

    • opendata.com.pk
    Updated Apr 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Pakistan Largest Ecommerce Dataset - Datasets - Open Data Pakistan [Dataset]. https://opendata.com.pk/dataset/pakistan-largest-ecommerce-dataset
    Explore at:
    Dataset updated
    Apr 2, 2021
    Area covered
    Pakistan
    Description

    This is the largest retail e-commerce orders dataset from Pakistan. It contains half a million transaction records from March 2016 to August 2018.

  9. h

    Bitext-retail-ecommerce-llm-chatbot-training-dataset

    • huggingface.co
    Updated Aug 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bitext (2024). Bitext-retail-ecommerce-llm-chatbot-training-dataset [Dataset]. https://huggingface.co/datasets/bitext/Bitext-retail-ecommerce-llm-chatbot-training-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    Bitext
    License

    https://choosealicense.com/licenses/cdla-sharing-1.0/https://choosealicense.com/licenses/cdla-sharing-1.0/

    Description

    Bitext - Retail (eCommerce) Tagged Training Dataset for LLM-based Virtual Assistants

      Overview
    

    This hybrid synthetic dataset is designed to be used to fine-tune Large Language Models such as GPT, Mistral and OpenELM, and has been generated using our NLP/NLG technology and our automated Data Labeling (DAL) tools. The goal is to demonstrate how Verticalization/Domain Adaptation for the [Retail (eCommerce)] sector can be easily achieved using our two-step approach to LLM… See the full description on the dataset page: https://huggingface.co/datasets/bitext/Bitext-retail-ecommerce-llm-chatbot-training-dataset.

  10. Ecommerce Market Data | South-east Asia E-commerce Contacts | 170M Profiles...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Ecommerce Market Data | South-east Asia E-commerce Contacts | 170M Profiles | Verified Accuracy | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/ecommerce-market-data-south-east-asia-e-commerce-contacts-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    Iraq, Timor-Leste, Syrian Arab Republic, Israel, Qatar, Nepal, Sri Lanka, Yemen, Lebanon, Philippines, South East Asia
    Description

    Success.ai’s Ecommerce Market Data for South-east Asia E-commerce Contacts provides a robust and accurate dataset tailored for businesses and organizations looking to connect with professionals in the fast-growing e-commerce industry across South-east Asia. Covering roles such as e-commerce managers, digital strategists, logistics experts, and online marketplace leaders, this dataset offers verified contact details, professional insights, and actionable market data.

    With access to over 170 million verified profiles globally, Success.ai ensures your outreach, marketing, and research strategies are powered by accurate, continuously updated, and AI-validated data. Backed by our Best Price Guarantee, this solution empowers you to excel in one of the world’s most dynamic e-commerce regions.

    Why Choose Success.ai’s Ecommerce Market Data?

    1. Verified Contact Data for Precision Outreach

      • Access verified work emails, phone numbers, and LinkedIn profiles of e-commerce professionals across South-east Asia.
      • AI-driven validation ensures 99% accuracy, reducing communication inefficiencies and enhancing engagement rates.
    2. Comprehensive Coverage of South-east Asia’s E-commerce Market

      • Includes professionals from key e-commerce hubs such as Singapore, Indonesia, Thailand, Vietnam, Malaysia, and the Philippines.
      • Gain insights into regional consumer trends, logistics challenges, and online marketplace dynamics.
    3. Continuously Updated Datasets

      • Real-time updates capture changes in professional roles, company expansions, and market conditions.
      • Stay aligned with industry trends and emerging opportunities in South-east Asia’s e-commerce sector.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, ensuring responsible and lawful data usage.

    Data Highlights:

    • 170M+ Verified Global Profiles: Engage with e-commerce professionals and decision-makers across South-east Asia.
    • Verified Contact Details: Gain work emails, phone numbers, and LinkedIn profiles for precision targeting.
    • Regional Insights: Understand key trends in e-commerce, logistics, and consumer preferences in South-east Asia.
    • Leadership Insights: Connect with online marketplace leaders, logistics managers, and digital marketing professionals driving innovation in the sector.

    Key Features of the Dataset:

    1. Comprehensive Professional Profiles in E-commerce

      • Identify and connect with professionals managing e-commerce platforms, online marketplaces, and logistics operations.
      • Target individuals responsible for digital marketing, supply chain management, and e-commerce strategies.
    2. Advanced Filters for Precision Campaigns

      • Filter professionals by industry focus (apparel, electronics, food delivery), geographic location, or job function.
      • Tailor campaigns to align with specific business goals, such as logistics optimization, consumer engagement, or market entry.
    3. Regional and Market-specific Insights

      • Leverage data on e-commerce trends, regional consumer behaviors, and logistics challenges unique to South-east Asia.
      • Refine marketing strategies and business plans based on actionable insights from the region.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data enable personalized messaging, highlight unique value propositions, and improve engagement outcomes.

    Strategic Use Cases:

    1. Marketing Campaigns and Digital Outreach

      • Promote e-commerce solutions, logistics services, or online marketing tools to professionals in South-east Asia’s e-commerce industry.
      • Use verified contact data for multi-channel outreach, including email, phone, and digital campaigns.
    2. Market Research and Competitive Analysis

      • Analyze e-commerce trends and consumer preferences across South-east Asia to refine product offerings and marketing strategies.
      • Benchmark against competitors to identify growth opportunities and high-demand solutions.
    3. Partnership Development and Vendor Collaboration

      • Build relationships with e-commerce platforms, logistics providers, and digital marketing agencies exploring strategic partnerships.
      • Foster collaborations that enhance consumer experiences, improve delivery efficiency, or expand market reach.
    4. Recruitment and Talent Acquisition

      • Target HR professionals and hiring managers in the e-commerce industry seeking candidates for logistics, digital marketing, and platform management roles.
      • Provide workforce optimization platforms or training solutions tailored to the sector.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality e-commerce market data at competitive prices, ensuring strong ROI for your marketing, sales, and business development initiatives.
    2. Seamless Integration

      • Integrate verified e-commerce data into CRM systems, analytics ...
  11. Zara UK Products Dataset - Complete Fashion E-commerce Data

    • crawlfeeds.com
    csv, zip
    Updated Aug 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Zara UK Products Dataset - Complete Fashion E-commerce Data [Dataset]. https://crawlfeeds.com/datasets/zara-uk-products-dataset-complete-fashion-e-commerce-data
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 17, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    16,000 Zara UK Fashion Products in CSV Format

    Unlock fashion retail intelligence with our comprehensive Zara UK products dataset. This premium collection contains 16,000 products from Zara's UK online store, providing detailed insights into one of the world's leading fast-fashion retailers. Perfect for fashion trend analysis, pricing strategies, competitive research, and machine learning applications.

    Dataset Overview

    • Language: English
    • Coverage: Men's, women's, and children's fashion
    • File Size: ~30MB
    • Data Freshness: Recently collected (2025)

    Complete Data Fields Included

    Product Information

    • name: Complete product titles and descriptions
    • brand: Brand identification (Zara)
    • category: Product categories (tops, bottoms, dresses, accessories)
    • description: Detailed item descriptions and features
    • composition: Fabric composition and material details
    • breadcrumbs: Navigation path and product hierarchy

    Pricing and Promotions

    • price: Current prices in GBP
    • old_price: Original prices before discounts
    • discount: Discount percentages and savings
    • promotions: Active promotional campaigns
    • currency: GBP for UK market analysis

    Product Attributes

    • color: Available color variations
    • sizes: Size ranges and availability
    • images: High-resolution product image URLs
    • url: Direct product page links

    Technical Fields

    • uniq_id: Unique product identifiers
    • scraped_at: Data collection timestamps

    Key Use Cases

    Fashion Trend Analysis

    • Track seasonal trends and popular styles
    • Analyze color preferences and combinations
    • Monitor fashion trend evolution
    • Predict upcoming fashion movements

    Competitive Intelligence

    • Study Zara's pricing strategies
    • Analyze product mix and category focus
    • Monitor inventory and availability patterns
    • Compare market positioning

    E-commerce Analytics

    • Category performance analysis
    • Price optimization strategies
    • Inventory planning insights
    • Customer preference mapping

    Machine Learning Applications

    • Fashion recommendation systems
    • Price prediction models
    • Trend forecasting algorithms
    • Image recognition training data

    Data Quality Features

    • Clean, Validated Data: Pre-processed and error-checked
    • Consistent Formatting: Standardized structure across records
    • No Duplicates: Unique products only
    • Complete Coverage: Entire Zara UK catalog included
    • Fresh Collection: Recently scraped for current relevance

    Target Industries

    Fashion Retailers

    • Competitive benchmarking
    • Trend adoption strategies
    • Pricing optimization
    • Product development insights

    Technology Companies

    • AI training datasets
    • Fashion analytics platforms
    • E-commerce enhancement
    • Style recommendation engines

    Market Research

    • Industry analysis reports
    • Brand performance tracking
    • Consumer behavior studies
    • Trend forecasting services

    Academic Research

    • Fashion industry studies
    • Business case studies
    • Data science applications
    • Sustainability research

    Licensing Options

    Commercial License

    • Full business usage rights
    • Team sharing permissions
    • Resale of processed insights
    • API integration allowed

    Academic License

    • Non-commercial research use
    • Educational institution sharing
    • Publication rights included
    • Discounted pricing available

    Delivery Methods

    • Instant

  12. c

    Women's E Commerce Clothing Reviews Dataset

    • cubig.ai
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2024). Women's E Commerce Clothing Reviews Dataset [Dataset]. https://cubig.ai/store/products/140/womens-e-commerce-clothing-reviews-dataset
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data introduction • Womens-ecommerce-clothing-reviews dataset is a dataset containing 23,000 customer reviews and ratings.

    2) Data utilization (1) Womens-ecommerce-clothing-reviews data has characteristics that: • We aim for high-quality NLP and multivariate analysis with a dataset consisting of 10 functional variables such as clothing, age, and review title and 23,486 rows. (2) Womens-ecommerce-clothing-reviews data can be used to: • Rating prediction: Develop machine learning models to predict the ratings customers might give based on review text and support automated review analysis. • Trend analysis: Companies can analyze data to identify trends and patterns in customer preferences and support inventory management and marketing strategies.

  13. Ecommerce Store Data | APAC E-commerce Sector | Verified Business Profiles...

    • datarade.ai
    Updated Jan 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Ecommerce Store Data | APAC E-commerce Sector | Verified Business Profiles with Key Insights | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/ecommerce-store-data-apac-e-commerce-sector-verified-busi-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 1, 2018
    Dataset provided by
    Area covered
    Lao People's Democratic Republic, Andorra, Mexico, Northern Mariana Islands, Korea (Democratic People's Republic of), Italy, Austria, Canada, Malta, Fiji
    Description

    Success.ai’s Ecommerce Store Data for the APAC E-commerce Sector provides a reliable and accurate dataset tailored for businesses aiming to connect with e-commerce professionals and organizations across the Asia-Pacific region. Covering roles and businesses involved in online retail, marketplace management, logistics, and digital commerce, this dataset includes verified business profiles, decision-maker contact details, and actionable insights.

    With access to continuously updated, AI-validated data and over 700 million global profiles, Success.ai ensures your outreach, market analysis, and partnership strategies are effective and data-driven. Backed by our Best Price Guarantee, this solution helps you excel in one of the world’s fastest-growing e-commerce markets.

    Why Choose Success.ai’s Ecommerce Store Data?

    1. Verified Profiles for Precision Engagement

      • Access verified profiles, business locations, employee counts, and decision-maker details for e-commerce businesses across APAC.
      • AI-driven validation ensures 99% accuracy, improving engagement rates and reducing outreach inefficiencies.
    2. Comprehensive Coverage of the APAC E-commerce Sector

      • Includes businesses from major e-commerce hubs such as China, India, Japan, South Korea, Australia, and Southeast Asia.
      • Gain insights into regional e-commerce trends, digital transformation efforts, and logistics innovations.
    3. Continuously Updated Datasets

      • Real-time updates ensure that business profiles, employee roles, and operational insights remain accurate and relevant.
      • Stay aligned with dynamic market conditions and emerging opportunities in the APAC region.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, ensuring responsible and lawful data usage.

    Data Highlights:

    • 700M+ Verified Global Profiles: Access business profiles for e-commerce professionals and organizations across APAC.
    • Firmographic Insights: Gain detailed information, including business locations, employee counts, and operational details.
    • Decision-maker Profiles: Connect with key e-commerce leaders, managers, and strategists driving online retail innovation.
    • Industry Trends: Understand emerging e-commerce trends, consumer behavior, and market dynamics in the APAC region.

    Key Features of the Dataset:

    1. Comprehensive E-commerce Business Profiles

      • Identify and connect with businesses specializing in online retail, marketplace management, and digital commerce logistics.
      • Target decision-makers involved in supply chain optimization, digital marketing, and platform development.
    2. Advanced Filters for Precision Campaigns

      • Filter businesses and professionals by industry focus (fashion, electronics, grocery), geographic location, or employee size.
      • Tailor campaigns to address specific goals, such as promoting technology adoption, enhancing customer engagement, or expanding supply chains.
    3. Regional and Sector-specific Insights

      • Leverage data on APAC’s fast-growing e-commerce markets, consumer purchasing trends, and regional challenges.
      • Refine your marketing strategies and outreach efforts to align with market priorities.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data allow for personalized messaging, highlight unique value propositions, and improve engagement outcomes.

    Strategic Use Cases:

    1. Marketing Campaigns and Outreach

      • Promote e-commerce solutions, logistics services, or digital commerce tools to businesses and professionals in the APAC region.
      • Use verified contact data for multi-channel outreach, including email, phone, and social media campaigns.
    2. Partnership Development and Vendor Collaboration

      • Build relationships with e-commerce marketplaces, logistics providers, and payment solution companies seeking strategic partnerships.
      • Foster collaborations that drive operational efficiency, enhance customer experiences, or expand market reach.
    3. Market Research and Competitive Analysis

      • Analyze regional e-commerce trends, consumer preferences, and logistics challenges to refine product offerings and business strategies.
      • Benchmark against competitors to identify growth opportunities and high-demand solutions.
    4. Recruitment and Talent Acquisition

      • Target HR professionals and hiring managers in the e-commerce industry recruiting for roles in operations, logistics, and digital marketing.
      • Provide workforce optimization platforms or training solutions tailored to the digital commerce sector.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality e-commerce store data at competitive prices, ensuring strong ROI for your marketing, sales, and strategic initiatives.
    2. Seamless Integration

      • Integrate verified e-commerce data into CRM systems, analytics platforms, or market...
  14. Data from: E-commerce and ICT activity

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Feb 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). E-commerce and ICT activity [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/itandinternetindustry/datasets/ictactivityofukbusinessesecommerceandictactivity
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 5, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Use of information and communication technology (ICT) and e-commerce activity by UK businesses. Annual data on e-commerce sales and how businesses are using the internet.

  15. g

    E-commerce Product Image Classification Dataset

    • gts.ai
    jpeg
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). E-commerce Product Image Classification Dataset [Dataset]. https://gts.ai/dataset-download/e-commerce-product-image-classification-dataset/
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Aug 28, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The E-commerce Product Image Classification Dataset includes 18,175 images across 9 major product categories, curated from Amazon, Walmart, Google, and web scraping. Designed for training CNNs in product categorization and improving e-commerce user experience.

  16. d

    Gross Value Added of e-Commerce by Main Sector - Dataset - MAMPU

    • archive.data.gov.my
    Updated Oct 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Gross Value Added of e-Commerce by Main Sector - Dataset - MAMPU [Dataset]. https://archive.data.gov.my/data/dataset/gross-value-added-of-e-commerce-by-main-sector
    Explore at:
    Dataset updated
    Oct 26, 2022
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset shows the Gross Value Added of e-Commerce by Main Sector, 2015 - 2021 The value for year 2020 is estimate The value for year 2021 is preliminary No. of Views : 136

  17. Ecommerce-FAQ-Chatbot-Dataset

    • kaggle.com
    Updated May 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Saad Makhdoom (2023). Ecommerce-FAQ-Chatbot-Dataset [Dataset]. https://www.kaggle.com/datasets/saadmakhdoom/ecommerce-faq-chatbot-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 19, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Muhammad Saad Makhdoom
    Description

    Dataset

    This dataset was created by Muhammad Saad Makhdoom

    Contents

  18. h

    Ecommerce_FAQ

    • huggingface.co
    Updated Aug 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ankush Singal (2023). Ecommerce_FAQ [Dataset]. https://huggingface.co/datasets/Andyrasika/Ecommerce_FAQ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 18, 2023
    Authors
    Ankush Singal
    License

    https://choosealicense.com/licenses/creativeml-openrail-m/https://choosealicense.com/licenses/creativeml-openrail-m/

    Description

    Ecommerce FAQ Chatbot Dataset Overview The Ecommerce FAQ Chatbot Dataset is a valuable collection of questions and corresponding answers, meticulously curated for training and evaluating chatbot models in the context of an Ecommerce environment. This dataset is designed to assist developers, researchers, and data scientists in building effective chatbots that can handle customer inquiries related to an Ecommerce platform. Contents The dataset comprises a total of 79 question-answer pairs… See the full description on the dataset page: https://huggingface.co/datasets/Andyrasika/Ecommerce_FAQ.

  19. d

    Ecommerce Data | Store Location Data | Global Coverage | 60M+ Contacts |...

    • datarade.ai
    Updated Jan 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Exellius Systems (2024). Ecommerce Data | Store Location Data | Global Coverage | 60M+ Contacts | (Verified E-mail, Direct Dails)| Decision Makers Contacts| 20+ Attributes [Dataset]. https://datarade.ai/data-products/ecommerce-data-ecommerce-store-data-global-coverage-200-exellius-systems
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 24, 2024
    Dataset authored and provided by
    Exellius Systems
    Area covered
    Gabon, Heard Island and McDonald Islands, Namibia, Iran (Islamic Republic of), Congo (Democratic Republic of the), Saint Vincent and the Grenadines, Lithuania, Spain, Jersey, Seychelles
    Description

    Revolutionize Customer Engagement with Our Comprehensive Ecommerce Data

    Our Ecommerce Data is designed to elevate your customer engagement strategies, providing you with unparalleled insights and precision targeting capabilities. With over 61 million global contacts, this dataset goes beyond conventional data, offering a unique blend of shopping cart links, business emails, phone numbers, and LinkedIn profiles. This comprehensive approach ensures that your marketing strategies are not just effective but also highly personalized, enabling you to connect with your audience on a deeper level.

    What Makes Our Ecommerce Data Stand Out?

    • Unique Features for Enhanced Targeting
      Our Ecommerce Data is distinguished by its depth and precision. Unlike many other datasets, it includes shopping cart links—a rare and valuable feature that provides you with direct insights into consumer behavior and purchasing intent. This information allows you to tailor your marketing efforts with unprecedented accuracy. Additionally, the integration of business emails, phone numbers, and LinkedIn profiles adds multiple layers to traditional contact data, enriching your understanding of clients and enabling more personalized engagement.

    • Robust and Reliable Data Sourcing
      We pride ourselves on our dual-sourcing strategy that ensures the highest levels of data accuracy and relevance:

      • Real-Time Information from 10 Active Publication Sites: Our databases are continuously updated with the latest information, sourced from ten active publication sites that provide real-time data.
      • Dedicated Contact Discovery Team: Complementing our automated sources, our dedicated Contact Discovery Team conducts thorough research and investigations, ensuring that every piece of data is accurate and reliable. This two-pronged approach guarantees that our Ecommerce Data is both up-to-date and relevant, providing you with a solid foundation for your business strategies.

      Primary Use Cases Across Industries

    Our Ecommerce Data is versatile and can be leveraged across various industries for multiple applications: - Precision Targeting in Marketing: Create personalized marketing campaigns based on detailed shopping cart activities, ensuring that your outreach resonates with individual customer preferences. - Sales Enrichment: Sales teams can benefit from enriched client profiles that include comprehensive contact information, enabling them to connect with key decision-makers more effectively. - Market Research and Analytics: Research and analytics departments can use this data for in-depth market studies and trend analyses, gaining valuable insights into consumer behavior and market dynamics.

    Global Coverage for Comprehensive Engagement

    Our Ecommerce Data spans across the globe, providing you with extensive reach and the ability to engage with customers in diverse regions: - North America: United States, Canada, Mexico - Europe: United Kingdom, Germany, France, Italy, Spain, Netherlands, Sweden, and more - Asia: China, Japan, India, South Korea, Singapore, Malaysia, and more - South America: Brazil, Argentina, Chile, Colombia, and more - Africa: South Africa, Nigeria, Kenya, Egypt, and more - Australia and Oceania: Australia, New Zealand - Middle East: United Arab Emirates, Saudi Arabia, Israel, Qatar, and more

    Comprehensive Employee and Revenue Size Information

    Our dataset also includes detailed information on: - Employee Size: Whether you’re targeting small businesses or large corporations, our data covers all employee sizes, from startups to global enterprises. - Revenue Size: Gain insights into companies across various revenue brackets, enabling you to segment the market more effectively and target your efforts where they will have the most impact.

    Seamless Integration into Broader Data Offerings

    Our Ecommerce Data is not just a standalone product; it is a critical piece of our broader data ecosystem. It seamlessly integrates with our comprehensive suite of business and consumer datasets, offering you a holistic approach to data-driven decision-making: - Tailored Packages: Choose customized data packages that meet your specific business needs, combining Ecommerce Data with other relevant datasets for a complete view of your market. - Holistic Insights: Whether you are looking for industry-specific details or a broader market overview, our integrated data solutions provide you with the insights necessary to stay ahead of the competition and make informed business decisions.

    Elevate Your Business Decisions with Our Ecommerce Data

    In essence, our Ecommerce Data is more than just a collection of contacts—it’s a strategic tool designed to give you a competitive edge in understanding and engaging your target audience. By leveraging the power of this comprehensive dataset, you can elevate your business decisions, enhance customer interactions, and navigate the digital landscape with confidence and insight.

  20. h

    e-commerce-orders

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MD MILLAT HOSEN, e-commerce-orders [Dataset]. http://doi.org/10.57967/hf/5258
    Explore at:
    Authors
    MD MILLAT HOSEN
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    E-commerce Customer Order Behavior Dataset

    A synthetic e-commerce dataset containing 10,000 orders with realistic customer behavior patterns, suitable for e-commerce analytics and machine learning tasks.

      Dataset Card for E-commerce Orders
    
    
    
    
    
      Dataset Summary
    

    This dataset simulates customer order behavior in an e-commerce platform, containing detailed information about orders, customers, products, and delivery patterns. The data is synthetically generated with… See the full description on the dataset page: https://huggingface.co/datasets/millat/e-commerce-orders.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M Mohaiminul Islam (2024). ECommerce Data Analysis [Dataset]. https://www.kaggle.com/datasets/mmohaiminulislam/ecommerce-data-analysis
Organization logo

ECommerce Data Analysis

Analysis the Total Ecommerce pipeline

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 1, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
M Mohaiminul Islam
License

MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically

Description

Objectives:

• I leveraged advanced data visualization techniques to extract valuable insights from a comprehensive dataset. By visualizing sales patterns, customer behavior, and product trends, I identified key growth opportunities and provided actionable recommendations to optimize business strategies and enhance overall performance. you can find the GitHub repo here Link to GitHub Repository.

Data Description:

there are exactly 6 table and 1 is a fact table and the rest of them are dimension tables: Fact Table:

payment_key:
  Description: An identifier representing the payment transaction associated with the fact.
  Use Case: This key links to a payment dimension table, providing details about the payment method and related information.

customer_key:
  Description: An identifier representing the customer associated with the fact.
  Use Case: This key links to a customer dimension table, providing details about the customer, such as name, address, and other customer-specific information.

time_key:
  Description: An identifier representing the time dimension associated with the fact.
  Use Case: This key links to a time dimension table, providing details about the time of the transaction, such as date, day of the week, and month.

item_key:
  Description: An identifier representing the item or product associated with the fact.
  Use Case: This key links to an item dimension table, providing details about the product, such as category, sub-category, and product name.

store_key:
  Description: An identifier representing the store or location associated with the fact.
  Use Case: This key links to a store dimension table, providing details about the store, such as location, store name, and other store-specific information.

quantity:
  Description: The quantity of items sold or involved in the transaction.
  Use Case: Represents the amount or number of items associated with the transaction.

unit:
  Description: The unit or measurement associated with the quantity (e.g., pieces, kilograms).
  Use Case: Specifies the unit of measurement for the quantity.

unit_price:
  Description: The price per unit of the item.
  Use Case: Represents the cost or price associated with each unit of the item.

total_price:
  Description: The total price of the transaction, calculated as the product of quantity and unit price.
  Use Case: Represents the overall cost or revenue generated by the transaction.

Customer Table: customer_key:

Description: An identifier representing a unique customer.
Use Case: Serves as the primary key to link with the fact table, allowing for easy and efficient retrieval of customer-specific information.

name:

Description: The name of the customer.
Use Case: Captures the personal or business name of the customer for identification and reference purposes.

contact_no:

Description: The contact number associated with the customer.
Use Case: Stores the phone number or contact details for communication or outreach purposes.

nid:

Description: The National ID (NID) or a unique identification number for the customer.

Item Table: item_key:

Description: An identifier representing a unique item or product.
Use Case: Serves as the primary key to link with the fact table, enabling retrieval of detailed information about specific items in transactions.

item_name:

Description: The name or title of the item.
Use Case: Captures the descriptive name of the item, providing a recognizable label for the product.

desc:

Description: A description of the item.
Use Case: Contains additional details about the item, such as features, specifications, or any relevant information.

unit_price:

Description: The price per unit of the item.
Use Case: Represents the cost or price associated with each unit of the item.

man_country:

Description: The country where the item is manufactured.
Use Case: Captures the origin or manufacturing location of the item.

supplier:

Description: The supplier or vendor providing the item.
Use Case: Stores the name or identifier of the supplier, facilitating tracking of item sources.

unit:

Description: The unit of measurement associated with the item (e.g., pieces, kilograms).

Store Table: store_key:

Description: An identifier representing a unique store or location.
Use Case: Serves as the primary key to link with the fact table, allowing for easy retrieval of information about transactions associated with specific stores.

division:

Description: The administrative division or region where the store is located.
Use Case: Captures the broader geographical area in which...
Search
Clear search
Close search
Google apps
Main menu