Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
I imported the two Olist Kaggle datasets into an SQLite database. I modified the original table names to make them shorter and easier to understand. Here's the Entity-Relationship Diagram of the resulting SQLite database:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2473556%2F23a7d4d8cd99e36e32e57303eb804fff%2Fdb-schema.png?generation=1714391550829633&alt=media" alt="Database Schema">
Data sources:
https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce
https://www.kaggle.com/datasets/olistbr/marketing-funnel-olist
I used this database as a data source for my notebook:
We release E-commerce Dialogue Corpus, comprising a training data set, a development set and a test set for retrieval based chatbot. The statistics of E-commerical Conversation Corpus are shown in the following table.
Train | Val | Test | |
---|---|---|---|
Session-response pairs | 1m | 10k | 10k |
Avg. positive response per session | 1 | 1 | 1 |
Min turn per session | 3 | 3 | 3 |
Max ture per session | 10 | 10 | 10 |
Average turn per session | 5.51 | 5.48 | 5.64 |
Average Word per utterance | 7.02 | 6.99 | 7.11 |
The full corpus can be downloaded from https://drive.google.com/file/d/154J-neBo20ABtSmJDvm7DK0eTuieAuvw/view?usp=sharing.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
E-commerce has become a new channel to support businesses development. Through e-commerce, businesses can get access and establish a wider market presence by providing cheaper and more efficient distribution channels for their products or services. E-commerce has also changed the way people shop and consume products and services. Many people are turning to their computers or smart devices to order goods, which can easily be delivered to their homes.
This is a sales transaction data set of UK-based e-commerce (online retail) for one year. This London-based shop has been selling gifts and homewares for adults and children through the website since 2007. Their customers come from all over the world and usually make direct purchases for themselves. There are also small businesses that buy in bulk and sell to other customers through retail outlet channels.
The data set contains 500K rows and 8 columns. The following is the description of each column. 1. TransactionNo (categorical): a six-digit unique number that defines each transaction. The letter “C” in the code indicates a cancellation. 2. Date (numeric): the date when each transaction was generated. 3. ProductNo (categorical): a five or six-digit unique character used to identify a specific product. 4. Product (categorical): product/item name. 5. Price (numeric): the price of each product per unit in pound sterling (£). 6. Quantity (numeric): the quantity of each product per transaction. Negative values related to cancelled transactions. 7. CustomerNo (categorical): a five-digit unique number that defines each customer. 8. Country (categorical): name of the country where the customer resides.
There is a small percentage of order cancellation in the data set. Most of these cancellations were due to out-of-stock conditions on some products. Under this situation, customers tend to cancel an order as they want all products delivered all at once.
Information is a main asset of businesses nowadays. The success of a business in a competitive environment depends on its ability to acquire, store, and utilize information. Data is one of the main sources of information. Therefore, data analysis is an important activity for acquiring new and useful information. Analyze this dataset and try to answer the following questions. 1. How was the sales trend over the months? 2. What are the most frequently purchased products? 3. How many products does the customer purchase in each transaction? 4. What are the most profitable segment customers? 5. Based on your findings, what strategy could you recommend to the business to gain more profit?
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Use of information and communication technology (ICT) and e-commerce activity by UK businesses. Annual data on e-commerce sales and how businesses are using the internet.
In 2024, global retail e-commerce sales reached an estimated ************ U.S. dollars. Projections indicate a ** percent growth in this figure over the coming years, with expectations to come close to ************** dollars by 2028. World players Among the key players on the world stage, the American marketplace giant Amazon holds the title of the largest e-commerce player globally, with a gross merchandise value of nearly *********** U.S. dollars in 2024. Amazon was also the most valuable retail brand globally, followed by mostly American competitors such as Walmart and the Home Depot. Leading e-tailing regions E-commerce is a dormant channel globally, but nowhere has it been as successful as in Asia. In 2024, the e-commerce revenue in that continent alone was measured at nearly ************ U.S. dollars, outperforming the Americas and Europe. That year, the up-and-coming e-commerce markets also centered around Asia. The Philippines and India stood out as the swiftest-growing e-commerce markets based on online sales, anticipating a growth rate surpassing ** percent.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 3 series, with data for years 2016 - 2017 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada); Sales (3 items: Retail trade; Electronic shopping and mail-order houses; Retail E-commerce sales).
In 2024, global e-commerce sales grew by 7.7 percent compared to the previous year. In that period, e-commerce accounted for approximately 17 percent of all retail sales worldwide. Asian countries lead the way According to an estimate, China and Indonesia ranked first and second respectively on the list of countries with the greatest share of retail sales projected to take place online in 2023. Following the same trend, estimates also revealed that the three fastest-growing retail e-commerce countries in the world are all in Asia. Amazon on top When looking at the leading e-commerce companies worldwide, as opposed to the leading e-commerce countries, Amazon is the clear market leader with a market cap of over two trillion U.S. dollars as of March 2025. Not only that, but the Seattle-based multinational company is also by far the most visited online marketplace in the world, with approximately 4.8 billion monthly visits.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The E-Commerce Data Dataset contains actual transaction records from an online retail company based in the UK. It includes various transaction-related attributes such as customer ID, product information, transaction date, quantity, and country.
2) Data Utilization (1) Characteristics of the E-Commerce Data Dataset: • This dataset is structured as time-series consumer behavior data at the transaction level. It includes attributes such as product category, quantity, unit price, and country, making it suitable for analyzing country-specific consumption patterns and developing region-based classification models.
(2) Applications of the E-Commerce Data Dataset: • Developing country-specific marketing strategies: By analyzing purchasing trends, frequently bought product categories, and transaction frequency by country, the dataset can be used to design regionally tailored marketing strategies.
Note:- Only publicly available data can be worked upon
In today's ever-evolving Ecommerce landscape, success hinges on the ability to harness the power of data. APISCRAPY is your strategic ally, dedicated to providing a comprehensive solution for extracting critical Ecommerce data, including Ecommerce market data, Ecommerce product data, and Ecommerce datasets. With the Ecommerce arena being more competitive than ever, having a data-driven approach is no longer a luxury but a necessity.
APISCRAPY's forte lies in its ability to unearth valuable Ecommerce market data. We recognize that understanding the market dynamics, trends, and fluctuations is essential for making informed decisions.
APISCRAPY's AI-driven ecommerce data scraping service presents several advantages for individuals and businesses seeking comprehensive insights into the ecommerce market. Here are key benefits associated with their advanced data extraction technology:
Ecommerce Product Data: APISCRAPY's AI-driven approach ensures the extraction of detailed Ecommerce Product Data, including product specifications, images, and pricing information. This comprehensive data is valuable for market analysis and strategic decision-making.
Data Customization: APISCRAPY enables users to customize the data extraction process, ensuring that the extracted ecommerce data aligns precisely with their informational needs. This customization option adds versatility to the service.
Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can obtain relevant ecommerce data swiftly and consistently.
Realtime Insights: Businesses can gain real-time insights into the dynamic Ecommerce Market by accessing rapidly extracted data. This real-time information is crucial for staying ahead of market trends and making timely adjustments to business strategies.
Scalability: The technology behind APISCRAPY allows scalable extraction of ecommerce data from various sources, accommodating evolving data needs and handling increased volumes effortlessly.
Beyond the broader market, a deeper dive into specific products can provide invaluable insights. APISCRAPY excels in collecting Ecommerce product data, enabling businesses to analyze product performance, pricing strategies, and customer reviews.
To navigate the complexities of the Ecommerce world, you need access to robust datasets. APISCRAPY's commitment to providing comprehensive Ecommerce datasets ensures businesses have the raw materials required for effective decision-making.
Our primary focus is on Amazon data, offering businesses a wealth of information to optimize their Amazon presence. By doing so, we empower our clients to refine their strategies, enhance their products, and make data-backed decisions.
[Tags: Ecommerce data, Ecommerce Data Sample, Ecommerce Product Data, Ecommerce Datasets, Ecommerce market data, Ecommerce Market Datasets, Ecommerce Sales data, Ecommerce Data API, Amazon Ecommerce API, Ecommerce scraper, Ecommerce Web Scraping, Ecommerce Data Extraction, Ecommerce Crawler, Ecommerce data scraping, Amazon Data, Ecommerce web data]
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for E-Commerce Retail Sales as a Percent of Total Sales (ECOMPCTNSA) from Q4 1999 to Q1 2025 about e-commerce, retail trade, percent, sales, retail, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
E-commerce sales of enterprises by NACE Rev. 2 activity
During the peak of the coronavirus (COVID-19) crisis (March-April 2020) when many countries worldwide introduced lockdown measures, e-commerce share in total retail sales saw proportions that were not seen before. In the United Kingdom, where an already mature e-commerce market exists, e-commerce share saw as high as **** percent, before stabilizing in the subsequent periods. In the most current period (as of January 31, 2021), United Kingdom, United States and Canada were the leading countries where e-commerce had a higher share as a proportion of total retail, at **, **, and ** percent, respectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘E-commerce Dataset ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mervemenekse/ecommerce-dataset on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Analyzing the purchases of our customers for 1 year. How are their customer's online buying habits?
Order_Date: The date the product was ordered.
Aging: The time from the day the product is ordered to the day it is delivered.
Customer_id: Unique id created for each customer.
Gender: Gender of customer.
Device_Type: The device the customer uses to actualize the transaction (Web/Mobile).
Customer_Login_Type: The type the customer logged in. Such as Member, Guest etc.
Product_Category: Product category
Product: Product
Sales: Total sales amount
Quantity: Unit amount of product
Discount: Percent discount rate
Profit: Profit
Shipping_cost: Shipping cost
Order_Priority: Order priority. Such as critical, high etc.
Payment_method: Payment method
-What devices do my customers use to reach me? -Who is the customer base? -What product categories am I selling? -Which product categories do I sell to whom? (Gender Distribution by Category or Product?) -Which login type do my customers prefer when shopping? -How does the date and time affect my sales? (Total sales by month, the days of week or time arrival) -From which product do I earn the most profit per unit? -How is my delivery speed and order priority?(Delivery Time distribution of order priority by months)
--- Original source retains full ownership of the source dataset ---
In the United States, e-commerce retail trade sales were worth nearly 1.2 trillion U.S. dollars in 2024, up from 1.1 billion U.S. dollars in 2023.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The E-commerce Order Dataset provides comprehensive information related to orders, items within orders, customers, payments, and products for an e-commerce platform. This dataset is structured with multiple tables, each containing specific information about various aspects of the e-commerce operations.
Success.ai’s Ecommerce Store Data for the APAC E-commerce Sector provides a reliable and accurate dataset tailored for businesses aiming to connect with e-commerce professionals and organizations across the Asia-Pacific region. Covering roles and businesses involved in online retail, marketplace management, logistics, and digital commerce, this dataset includes verified business profiles, decision-maker contact details, and actionable insights.
With access to continuously updated, AI-validated data and over 700 million global profiles, Success.ai ensures your outreach, market analysis, and partnership strategies are effective and data-driven. Backed by our Best Price Guarantee, this solution helps you excel in one of the world’s fastest-growing e-commerce markets.
Why Choose Success.ai’s Ecommerce Store Data?
Verified Profiles for Precision Engagement
Comprehensive Coverage of the APAC E-commerce Sector
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive E-commerce Business Profiles
Advanced Filters for Precision Campaigns
Regional and Sector-specific Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing Campaigns and Outreach
Partnership Development and Vendor Collaboration
Market Research and Competitive Analysis
Recruitment and Talent Acquisition
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains longitudinal purchases data from 5027 Amazon.com users in the US, spanning 2018 through 2022: amazon-purchases.csv It also includes demographic data and other consumer level variables for each user with data in the dataset. These consumer level variables were collected through an online survey and are included in survey.csv fields.csv describes the columns in the survey.csv file, where fields/survey columns correspond to survey questions. The dataset also contains the survey instrument used to collect the data. More details about the survey questions and possible responses, and the format in which they were presented can be found by viewing the survey instrument. A 'Survey ResponseID' column is present in both the amazon-purchases.csv and survey.csv files. It links a user's survey responses to their Amazon.com purchases. The 'Survey ResponseID' was randomly generated at the time of data collection. amazon-purchases.csv Each row in this file corresponds to an Amazon order. Each such row has the following columns: Survey ResponseID Order date Shipping address state Purchase price per unit Quantity ASIN/ISBN (Product Code) Title Category The data were exported by the Amazon users from Amazon.com and shared by users with their informed consent. PII and other information not listed above were stripped from the data. This processing occurred on users' machines before sharing with researchers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A comprehensive dataset providing key insights into the eCommerce industry, including global retail online sales projections, number of eCommerce stores, digital buyer statistics, revenue growth in the United States, sector-wise revenue details with a focus on consumer electronics, average conversion rates, and mobile commerce sales forecasts.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
This dataset is a sample extraction of product listings from Zoro.com, a leading industrial supply e-commerce platform. It provides structured product-level data that can be used for market research, price comparison engines, product matching models, and e-commerce analytics.
The sample includes a variety of products across tools, hardware, safety equipment, and industrial supplies — with clean, structured fields suitable for both analysis and model training.
Also available: Grainger Product Datasets – structured data from a top industrial supplier.
Submit your custom data requests via the Zoro products page or contact us directly at contact@crawlfeeds.com.
Ideal for previewing before requesting larger or full Zoro datasets
Building product comparison or search engines
Price intelligence and competitor monitoring
Product classification and attribute extraction
Training data for e-commerce AI models
This is a sample of a much larger dataset extracted from Zoro.com.
👉 Contact us to access full datasets or request custom category extractions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - E-Commerce Retail Sales was 300226.00000 Mil. of $ in January of 2025, according to the United States Federal Reserve. Historically, United States - E-Commerce Retail Sales reached a record high of 300357.00000 in October of 2024 and a record low of 4467.00000 in October of 1999. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - E-Commerce Retail Sales - last updated from the United States Federal Reserve on June of 2025.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
I imported the two Olist Kaggle datasets into an SQLite database. I modified the original table names to make them shorter and easier to understand. Here's the Entity-Relationship Diagram of the resulting SQLite database:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2473556%2F23a7d4d8cd99e36e32e57303eb804fff%2Fdb-schema.png?generation=1714391550829633&alt=media" alt="Database Schema">
Data sources:
https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce
https://www.kaggle.com/datasets/olistbr/marketing-funnel-olist
I used this database as a data source for my notebook: