35 datasets found
  1. United States: highest point in each state or territory

    • statista.com
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: highest point in each state or territory [Dataset]. https://www.statista.com/statistics/203932/highest-points-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.

    Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.

  2. United States: average elevation in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: average elevation in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325529/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.

  3. United States: lowest point in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: lowest point in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325443/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.

  4. Prince William Sound, Alaska 8/3 Arc-second MHHW Coastal Digital Elevation...

    • datadiscoverystudio.org
    • s.cnmilf.com
    • +2more
    netcdf v.4 classic
    Updated Apr 20, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2009). Prince William Sound, Alaska 8/3 Arc-second MHHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/c45e262def274fedbb2719b3708be778/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Apr 20, 2009
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).

  5. Highest mountain in each continent globally 2023

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Highest mountain in each continent globally 2023 [Dataset]. https://www.statista.com/statistics/1387281/highest-mountain-each-continent-global/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of May 2023, the highest mountain in the world, by meters above mean sea level, was Mount Everest. Located in China and Nepal in Asia, Mount Everest's height of 8,848 meters was nearly 2,000 meters higher than Aconcagua in South America, which was the world's highest mountain outside of Asia.

  6. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    • +1more
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/surging-seas-risk-zone-map
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  7. F

    All Employees: Total Nonfarm in Greensboro-High Point, NC (MSA)

    • fred.stlouisfed.org
    json
    Updated Apr 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All Employees: Total Nonfarm in Greensboro-High Point, NC (MSA) [Dataset]. https://fred.stlouisfed.org/series/SMS37246600000000026
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 19, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Greensboro-High Point, NC, High Point, North Carolina
    Description

    Graph and download economic data for All Employees: Total Nonfarm in Greensboro-High Point, NC (MSA) (SMS37246600000000026) from Apr 1990 to Mar 2025 about Greensboro, payrolls, nonfarm, NC, employment, and USA.

  8. Chignik, Alaska 1/3 arc-second Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • ncei.noaa.gov
    • +1more
    Updated Feb 26, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Tsunami Hazard Mitigation Program (NTHMP) (2014). Chignik, Alaska 1/3 arc-second Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/cb3b029295a24416abca5697f70c0c41/html
    Explore at:
    Dataset updated
    Feb 26, 2014
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Tsunami Hazard Mitigation Program (NTHMP)
    National Environmental Satellite, Data, and Information Service
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).This is an ArcGIS image service showing color shaded relief visualizations of high-resolution digital elevation models (DEMs) of U.S. coastal regions. NOAA's National Geophysical Data Center (NGDC) builds and distributes high-resolution coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. DEMs included in this visualization: High-resolution DEMs of select U.S. coastal communities and surrounding areas. Most are at a resolution of 1/3 to 1 arc-second (approx 10-30 m); U.S. Coastal Relief Model: A 3 arc-second (approx 90 m) comprehensive view of the conterminous U.S. coastal zone, Puerto Rico, and Hawaii; Southern Alaska Coastal Relief Model: A 24 arc-second (approx. 500 m) model of Southern Alaska, spanning the Bering Sea, Aleutian Islands, and Gulf of Alaska. This map service can be used as a basemap. It has a transparent background, so it can also be shown as a layer on top of a different basemap. Please see NGDC's corresponding DEM Footprints map service for polygon footprints and more information about the individual DEMs used to create this composite view.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Geophysical Data Center. NOAA's National Geophysical Data Center (NGDC) builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NGDC, and elsewhere on the web); Layers 6-11: NGDC DEM Projects (DEMs hosted at NGDC, color-coded by project); Layer 12: All NGDC Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NGDC).

  9. f

    Break-point regression coefficients relating mean annual temperature in °C...

    • figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James R. Kellner; Joseph Kendrick; Dov F. Sax (2023). Break-point regression coefficients relating mean annual temperature in °C (response) to time in years (predictor) for each of the five USA mountain ranges. [Dataset]. http://doi.org/10.1371/journal.pclm.0000071.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS Climate
    Authors
    James R. Kellner; Joseph Kendrick; Dov F. Sax
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The data are from PRISM data product AN81m. Slope coefficients are the trend in the relationship before and after the break point (cf. Fig 1). The coefficient of determination and P value refer exclusively to the linear trend after the breakpoint.

  10. a

    United States

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Nov 3, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2021). United States [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/arcgis-content::united-states
    Explore at:
    Dataset updated
    Nov 3, 2021
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shows figures of quit rates and quit levels by the US, BLS regions, and states. Data is from the Bureau of Labor Statistics (BLS) and was released October and November of 2021. The layer default symbology highlights to September 2021 quit rate in comparison to the national figure of 3.0%.According to the October 2021 News Release by BLS:"The number of quits increased in August to 4.3 million (+242,000). The quits rate increased to a series high of 2.9 percent. Quits increased in accommodation and food services (+157,000); wholesale trade (+26,000); and state and local government education (+25,000). Quits decreased in real estate and rental and leasing (-23,000). The number of quits increased in the South and Midwest regions."In the following November News Release:"In September, quits rates increased in 15 states and decreased in 10 states. The largest increases in quits rates occurred in Hawaii (+3.8 percentage points), Montana (+1.5 points), as well as Nevada and New Hampshire (+1.1 points each). The largest decreases in quits rates occurred in Kentucky (-1.1 percentage points), Iowa (-1.0 point), and South Dakota (-0.7 point). Over the month, the national quits rate increased (+0.1 percentage point)."Quit rates: The quits rate is the number of quits during the entire month as a percent of total employment.Quit levels: Quits are the number of quits during the entire month.State and US figures: Table 4. Quits levels and rates by industry and region, seasonally adjustedRegion figures: Table 4. Quits levels and rates by industry and region, seasonally adjustedThis data was obtained in October and November 2021, and the months of data from BLS are as follows:August 2020September 2020April 2021 (only offered for Regions)May 2021June 2021July 2021August 2021September 2021 (preliminary values)For the full data release, click here.The states (including the District of Columbia) that comprise the regions are: Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and VermontSouth: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West VirginiaMidwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and WisconsinWest: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming.

  11. T

    All Employees: Government in Greensboro-High Point, NC (MSA)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). All Employees: Government in Greensboro-High Point, NC (MSA) [Dataset]. https://tradingeconomics.com/united-states/government-employment-in-greensboro-high-point-nc-msa-thous-of-persons-m-nsa-fed-data.html
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Greensboro-High Point, NC, High Point, North Carolina
    Description

    All Employees: Government in Greensboro-High Point, NC (MSA) was 47.00000 Thous. of Persons in March of 2025, according to the United States Federal Reserve. Historically, All Employees: Government in Greensboro-High Point, NC (MSA) reached a record high of 49.60000 in May of 2010 and a record low of 28.70000 in August of 1990. Trading Economics provides the current actual value, an historical data chart and related indicators for All Employees: Government in Greensboro-High Point, NC (MSA) - last updated from the United States Federal Reserve on May of 2025.

  12. King Cove, Alaska 8 arc-second Coastal Digital Elevation Model

    • datadiscoverystudio.org
    esri arc ascii v.1
    Updated Jan 2, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2014). King Cove, Alaska 8 arc-second Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/bb7f5d0723a7441aa4d3d36a73555592/html
    Explore at:
    esri arc ascii v.1(165), esri arc ascii v.1Available download formats
    Dataset updated
    Jan 2, 2014
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Tsunami Hazard Mitigation Program (NTHMP)
    National Environmental Satellite, Data, and Information Service
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).This is an ArcGIS image service showing color shaded relief visualizations of high-resolution digital elevation models (DEMs) of U.S. coastal regions. NOAA's National Geophysical Data Center (NGDC) builds and distributes high-resolution coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. DEMs included in this visualization: High-resolution DEMs of select U.S. coastal communities and surrounding areas. Most are at a resolution of 1/3 to 1 arc-second (approx 10-30 m); U.S. Coastal Relief Model: A 3 arc-second (approx 90 m) comprehensive view of the conterminous U.S. coastal zone, Puerto Rico, and Hawaii; Southern Alaska Coastal Relief Model: A 24 arc-second (approx. 500 m) model of Southern Alaska, spanning the Bering Sea, Aleutian Islands, and Gulf of Alaska. This map service can be used as a basemap. It has a transparent background, so it can also be shown as a layer on top of a different basemap. Please see NGDC's corresponding DEM Footprints map service for polygon footprints and more information about the individual DEMs used to create this composite view.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Geophysical Data Center. NOAA's National Geophysical Data Center (NGDC) builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NGDC, and elsewhere on the web); Layers 6-11: NGDC DEM Projects (DEMs hosted at NGDC, color-coded by project); Layer 12: All NGDC Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NGDC).

  13. Housing policies during COVID-19 in the U.S. 2021, by state

    • ai-chatbox.pro
    • statista.com
    Updated Dec 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2023). Housing policies during COVID-19 in the U.S. 2021, by state [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F7068%2Fcoronavirus-us-real-estate%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Dec 19, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    Many U.S. states have introduced strategies to ensure safe, decent, and stable housing during the COVID-19 pandemic. To better understand the steps states have taken to prevent homelessness, a special policy scorecard for each state was developed. Washington D.C. had the highest score among the states, which amounted to 4.63. On the contrary, Maryland, Georgia, Arkansas, Alaska, Wisconsin, and Ohio received zero points, which indicated that they had introduced no housing policy measures in response to the pandemic, or the protections they brought in have expired.

  14. Nikolski, Alaska 1 arc-second MHHW Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • datasets.ai
    • +2more
    netcdf v.4 classic
    Updated Jul 24, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce (2014). Nikolski, Alaska 1 arc-second MHHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/bf44c4cb0b2143ff9a0abeabd147a397/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Jul 24, 2014
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Environmental Satellite, Data, and Information Service
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).

  15. T

    All Employees: Government: Federal Government in Greensboro-High Point, NC...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). All Employees: Government: Federal Government in Greensboro-High Point, NC (MSA) [Dataset]. https://tradingeconomics.com/united-states/all-employees-federal-government-in-greensboro-high-point-nc-msa-thous-of-persons-fed-data.html
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Apr 24, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Greensboro-High Point, NC, High Point, North Carolina
    Description

    All Employees: Government: Federal Government in Greensboro-High Point, NC (MSA) was 4.58958 Thous. of Persons in February of 2022, according to the United States Federal Reserve. Historically, All Employees: Government: Federal Government in Greensboro-High Point, NC (MSA) reached a record high of 5.71655 in May of 2010 and a record low of 3.37657 in November of 1990. Trading Economics provides the current actual value, an historical data chart and related indicators for All Employees: Government: Federal Government in Greensboro-High Point, NC (MSA) - last updated from the United States Federal Reserve on April of 2025.

  16. F

    Regional Price Parities: All Items for Greensboro-High Point, NC (MSA)

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Regional Price Parities: All Items for Greensboro-High Point, NC (MSA) [Dataset]. https://fred.stlouisfed.org/series/RPPALL24660
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Greensboro-High Point, NC, High Point, North Carolina
    Description

    Graph and download economic data for Regional Price Parities: All Items for Greensboro-High Point, NC (MSA) (RPPALL24660) from 2008 to 2023 about Greensboro, PPP, all items, NC, price, and USA.

  17. d

    California State Waters Map Series--Offshore of Coal Oil Point Web Services

    • catalog.data.gov
    • dataone.org
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). California State Waters Map Series--Offshore of Coal Oil Point Web Services [Dataset]. https://catalog.data.gov/dataset/california-state-waters-map-series-offshore-of-coal-oil-point-web-services
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Coal Oil Point map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Offshore Coal Oil Point map area data layers. Data layers are symbolized as shown on the associated map sheets.

  18. Cities with the highest altitudes in the world

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest altitudes in the world [Dataset]. https://www.statista.com/statistics/509341/highest-cities-in-the-world/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    World
    Description

    The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits 3,869 meters above sea level, and is more than 1,000 meters higher than the second ranked city - Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's highest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of 1,673 meters.

  19. e

    Mountain Birdwatch: 2010-2022

    • knb.ecoinformatics.org
    • search.dataone.org
    • +1more
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Hill (2025). Mountain Birdwatch: 2010-2022 [Dataset]. http://doi.org/10.5063/F1R78CP7
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Jason Hill
    Time period covered
    Jun 1, 2010 - Jul 31, 2022
    Area covered
    Variables measured
    Year, Route, State, Region, RouteID, Comments, Latitude, Elevation, Longitude, ObserverID, and 32 more
    Description

    Mountain Birdwatch (MBW) is a long-term community science monitoring program for 10 bird and 1 mammal species that breed in high-elevation spruce-fir forests of the northeastern United States. Initiated in 2000 as Mountain Birdwatch 1.0, MBW 2.0 (years 2010 and onwards) provides the only region-wide source of population information on these high-elevation species. Each June, under the coordination of the Vermont Center for Ecostudies, volunteers perform repeated point counts at nearly 750 long-term fixed sampling sites along established hiking trails in Vermont, New Hampshire, Maine, and eastern New York (Catskills and Adirondacks). The primary emphasis was placed on Bicknell’s Thrush, a montane-fir specialist that breeds only in the Northeastern U.S. and adjacent portions of Canada. In 2010, the program underwent many positive changes to reemerge as Mountain Birdwatch 2.0. All of the sampling locations prior to 2010 were permanently retired, and new sampling locations were chosen using a generalized random tessellation stratified (GRTS) procedure. For more information see: https://vtecostudies.org/projects/mountains/mountain-birdwatch/ These data on KNB contain all of the point count for the 11 monitored species from 2010 to 2022 with the exception of data from 6 routes in Maine that occur on commercial timberlands. Our confidentiality agreements with those timber operations prevent us from sharing those data in a non-aggregated format.

  20. Larsen Bay, Alaska 8/15 arc-second MHHW Coastal Digital Elevation Model

    • datadiscoverystudio.org
    • gimi9.com
    • +2more
    netcdf v.4 classic
    Updated Sep 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCEI > National Centers for Environmental Information, NESDIS, NOAA, U.S. Department of Commerce (2016). Larsen Bay, Alaska 8/15 arc-second MHHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/006b5b035d254f779f201bb225670937/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Sep 29, 2016
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Environmental Satellite, Data, and Information Service
    Area covered
    Description

    NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). United States: highest point in each state or territory [Dataset]. https://www.statista.com/statistics/203932/highest-points-in-the-united-states-by-state/
Organization logo

United States: highest point in each state or territory

Explore at:
Dataset updated
Aug 8, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2005
Area covered
United States
Description

At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.

Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.

Search
Clear search
Close search
Google apps
Main menu