100+ datasets found
  1. d

    Finhubb Stock API - Datasets

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M, K (2023). Finhubb Stock API - Datasets [Dataset]. http://doi.org/10.7910/DVN/PVEM40
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    M, K
    Description

    Finnhub is the ultimate stock api in the market, providing real-time and historical price for global stocks with Rest API and websocket. We also support a tons of other financial data like stock fundamentals, analyst estimates, fundamental data and more. Download the file to access balance sheet of Amazon.

  2. 2010-2014 ACS Earnings by Occupation by Sex Variables - Boundaries

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Nov 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). 2010-2014 ACS Earnings by Occupation by Sex Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/7d5bd40589b948588c4a55515aa771b6
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows median earnings by occupational group broken down by sex. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Only full-time year-round workers included. Median earnings is based on earnings in past 12 months of survey. Occupation Groups based on Bureau of Labor Statistics (BLS)' Standard Occupation Classification (SOC). This layer is symbolized to show median earnings of the full-time, year-round civilian employed population. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B24022 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  3. c

    Global Financial Data APIs Market Report 2025 Edition, Market Size, Share,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global Financial Data APIs Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/financial-data-apis-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Global Financial Data APIs market size 2025 was XX Million. Financial Data APIs Industry compound annual growth rate (CAGR) will be XX% from 2025 till 2033.

  4. c

    Global API Market Report 2025 Edition, Market Size, Share, CAGR, Forecast,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global API Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/api-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Global API market size 2025 is $269.9 Billion whereas according out published study it will reach to $420.313 Billion by 2033. API market will be growing at a CAGR of 5.693% during 2025 to 2033.

  5. (API) Abrdn Property Income: Renting Out the Future? (Forecast)

    • kappasignal.com
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). (API) Abrdn Property Income: Renting Out the Future? (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/api-abrdn-property-income-renting-out.html
    Explore at:
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    (API) Abrdn Property Income: Renting Out the Future?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. 2010-2014 ACS Earnings by Occupation Variables - Boundaries

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Nov 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). 2010-2014 ACS Earnings by Occupation Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/1c70912bc6c8478e838f67d217e01e51
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows median earnings by occupational group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Only full-time year-round workers included. Median earnings is based on earnings in past 12 months of survey. Occupation Groups based on Bureau of Labor Statistics (BLS)' Standard Occupation Classification (SOC). This layer is symbolized to show median earnings of the full-time, year-round civilian employed population. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B24021 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  7. V

    Virginia Median Household Income in the Past 12 Months by Census Block Group...

    • data.virginia.gov
    csv
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of INTERMODAL Planning and Investment (2025). Virginia Median Household Income in the Past 12 Months by Census Block Group (ACS 5-Year) [Dataset]. https://data.virginia.gov/dataset/virginia-median-household-income-in-the-past-12-months-by-census-block-group-acs-5-year
    Explore at:
    csv(6955260)Available download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Office of INTERMODAL Planning and Investment
    Description

    2013-2023 Virginia Median Household Income based on the past 12 months by Census Block Group. Contains estimates and margins of error.

    Special data considerations: Large negative values do exist (more detail below) and should be addressed prior to graphing or aggregating the data.

    A value of -666,666,666 in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.

    A value of -222,222,222 in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

    U.S. Census Bureau; American Community Survey, American Community Survey 5-Year Estimates, Table B19013 Data accessed from: Census Bureau's API for American Community Survey (https://www.census.gov/data/developers/data-sets.html)

    The United States Census Bureau's American Community Survey (ACS): -What is the American Community Survey? (https://www.census.gov/programs-surveys/acs/about.html) -Geography & ACS (https://www.census.gov/programs-surveys/acs/geography-acs.html) -Technical Documentation (https://www.census.gov/programs-surveys/acs/technical-documentation.html)

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section. (https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html)

    Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section. (https://www.census.gov/acs/www/methodology/sample_size_and_data_quality/)

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties.

    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation https://www.census.gov/programs-surveys/acs/technical-documentation.html). The effect of nonsampling error is not represented in these tables.

    Annotation values are character representations of estimates and have values when non-integer information needs to be represented. Below are a few examples. Complete information is available on the ACS website under Notes on ACS Estimate and Annotation Values. (https://www.census.gov/data/developers/data-sets/acs-1year/notes-on-acs-estimate-and-annotation-values.html).

  8. s

    Global Heparin API Market Revenue Forecasts 2025-2032

    • statsndata.org
    excel, pdf
    Updated Jun 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Heparin API Market Revenue Forecasts 2025-2032 [Dataset]. https://www.statsndata.org/report/heparin-api-market-24382
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Jun 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Heparin Active Pharmaceutical Ingredient (API) market has emerged as a vital segment within the broader pharmaceutical landscape, primarily due to the growing demand for anticoagulant therapies aimed at preventing and treating various cardiovascular diseases, deep vein thrombosis, and pulmonary embolism. Heparin

  9. API Group Soaring: (APG) Stock Forecast (Forecast)

    • kappasignal.com
    Updated Nov 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). API Group Soaring: (APG) Stock Forecast (Forecast) [Dataset]. https://www.kappasignal.com/2024/11/api-group-soaring-apg-stock-forecast.html
    Explore at:
    Dataset updated
    Nov 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    API Group Soaring: (APG) Stock Forecast

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. c

    Global API Monetization Platform Market Report 2025 Edition, Market Size,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global API Monetization Platform Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/api-monetization-platform-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Global API Monetization Platform market size 2025 was XX Million. API Monetization Platform Industry compound annual growth rate (CAGR) will be XX% from 2025 till 2033.

  11. ACS 5YR CHAS Estimate Data by Place

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). ACS 5YR CHAS Estimate Data by Place [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/acs-5yr-chas-estimate-data-by-place/api
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The U.S. Department of Housing and Urban Development (HUD) periodically receives "custom tabulations" of Census data from the U.S. Census Bureau that are largely not available through standard Census products. These datasets, known as "CHAS" (Comprehensive Housing Affordability Strategy) data, demonstrate the extent of housing problems and housing needs, particularly for low income households.

    The primary purpose of CHAS data is to demonstrate the number of households in need of housing assistance. This is estimated by the number of households that have certain housing problems and have income low enough to qualify for HUD’s programs (primarily 30, 50, and 80 percent of median income).

    CHAS data provides counts of the numbers of households that fit these HUD-specified characteristics in a variety of geographic areas. In addition to estimating low-income housing needs, CHAS data contributes to a more comprehensive market analysis by documenting issues like lead paint risks, "affordability mismatch," and the interaction of affordability with variables like age of homes, number of bedrooms, and type of building.

    This dataset is a special tabulation of the 2016-2020 American Community Survey (ACS) and reflects conditions over that time period. The dataset uses custom HUD Area Median Family Income (HAMFI) figures calculated by HUD PDR staff based on 2016-2020 ACS income data.

    CHAS datasets are used by Federal, State, and Local governments to plan how to spend, and distribute HUD program funds. To learn more about the Comprehensive Housing Affordability Strategy (CHAS), visit: https://www.huduser.gov/portal/datasets/cp.html, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs Data Dictionary: DD_ACS 5-Year CHAS Estimate Data by Place Date of Coverage: 2016-2020

  12. LON:API Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Nov 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). LON:API Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/lonapi-target-price-prediction.html
    Explore at:
    Dataset updated
    Nov 19, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LON:API Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. w

    Global Telecom Programming Interface Api Market Research Report: By...

    • wiseguyreports.com
    Updated Jun 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wWiseguy Research Consultants Pvt Ltd (2024). Global Telecom Programming Interface Api Market Research Report: By Component (API Platform, API Management Tools, API Security Solutions), By Deployment Model (Cloud-Based, On-Premises), By Application (Customer Relationship Management (CRM), Billing and Revenue Management, Network Management and Operations, Analytics and Business Intelligence), By Industry Vertical (Telecommunications, Financial Services, Healthcare, Retail) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2032. [Dataset]. https://www.wiseguyreports.com/reports/telecom-programming-interface-api-market
    Explore at:
    Dataset updated
    Jun 26, 2024
    Dataset authored and provided by
    wWiseguy Research Consultants Pvt Ltd
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Jan 6, 2024
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2024
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20235.25(USD Billion)
    MARKET SIZE 20246.14(USD Billion)
    MARKET SIZE 203221.6(USD Billion)
    SEGMENTS COVEREDComponent ,Deployment Model ,Application ,Industry Vertical ,Regional
    COUNTRIES COVEREDNorth America, Europe, APAC, South America, MEA
    KEY MARKET DYNAMICS1 Increasing demand for APIs to enhance customer experience and operational efficiency 2 Growing adoption of cloudbased APIs for scalability and flexibility 3 Rise of 5G technology and its impact on API development and usage 4 Increasing focus on data security and privacy in API design and implementation 5 Emergence of new API standards and frameworks
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDAT&T ,NTT Docomo ,America Movil ,Verizon ,Orange ,TMobile ,Vodafone ,Telefonica ,Dish Network ,China Mobile ,SK Telecom ,KT ,KDDI ,Deutsche Telekom ,TIM
    MARKET FORECAST PERIOD2025 - 2032
    KEY MARKET OPPORTUNITIES5G expansion Rising demand for cloudbased services Growth of IoT devices Increasing adoption of APIs in telecom networks Growing adoption of artificial intelligence AI and machine learning ML
    COMPOUND ANNUAL GROWTH RATE (CAGR) 17.02% (2025 - 2032)
  14. A

    API Monetization Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). API Monetization Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/api-monetization-platform-1464700
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 5, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The API Monetization Platform market is experiencing robust growth, driven by the increasing adoption of APIs across various industries and the need for businesses to generate revenue from their API assets. The market, estimated at $5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 25% through 2033, reaching approximately $25 billion by the end of the forecast period. This expansion is fueled by several key factors, including the rise of microservices architecture, the growing demand for real-time data integration, and the increasing sophistication of API management tools. Major players like Amazon Web Services, Google, Microsoft, and IBM are driving innovation and market penetration through their comprehensive platform offerings, fostering a competitive yet dynamic landscape. Furthermore, the emergence of innovative monetization models, such as freemium and pay-as-you-go pricing, are contributing to market expansion. The market’s segmentation reflects diverse application areas, including financial services, healthcare, and e-commerce, each with unique API monetization requirements and opportunities. The restraints to growth include the challenges associated with secure API management, the complexity of pricing strategies, and the need for robust developer support. The competitive landscape is characterized by a mix of established technology giants and specialized API management providers. Established players leverage their existing infrastructure and customer base, while smaller companies focus on niche functionalities and innovative solutions. The market is witnessing strategic partnerships and mergers and acquisitions, highlighting the increasing importance of API monetization as a core revenue stream for businesses. Geographical distribution shows significant market concentration in North America and Europe, although rapidly developing economies in Asia-Pacific are emerging as significant growth drivers. The ongoing trend towards cloud-native architectures further accelerates the adoption of API monetization platforms, creating significant opportunities for innovation and market expansion in the coming years. The focus on enhancing developer experience and providing comprehensive analytics dashboards is crucial for securing market share and driving future growth.

  15. An Analysis of the Open API Market by Cloud Computing (IaaS, PaaS, SaaS),...

    • futuremarketinsights.com
    html, pdf
    Updated Aug 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Future Market Insights (2023). An Analysis of the Open API Market by Cloud Computing (IaaS, PaaS, SaaS), Transportation, Financial Services, e-Commerce, Social Networking, Media & Entertainment, Advertising, Government, Others 2023 to 2033 [Dataset]. https://www.futuremarketinsights.com/reports/open-api-market
    Explore at:
    pdf, htmlAvailable download formats
    Dataset updated
    Aug 7, 2023
    Dataset provided by
    Authors
    Future Market Insights
    License

    https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy

    Time period covered
    2023 - 2033
    Area covered
    Worldwide
    Description

    The global open API market is projected to amass a revenue of around US$ 19,591.4 million by 2033, up from US$ 2,794.5 million

    Report AttributesDetails
    Open API Market Value (2023)US$ 2,794.5 million
    Open API Market Anticipated Forecast Value (2033)US$ 19,591.4 million
    Open API Market Projected Growth Rate (2023 to 2033)21.5%

    Report Scope

    Report AttributesDetails
    Growth RateCAGR of 21.5% from 2023 to 2033
    Open API Market Value (2023)US$ 2,794.5 million
    Open API Market Anticipated Forecast Value (2033)US$ 19,591.4 million
    Base Year for Estimation2022
    Historical Data2018 to 2022
    Forecast Period2023 to 2033
    Quantitative UnitsRevenue in US$ million and CAGR from 2023 to 2033
    Report CoverageRevenue Forecast, Volume Forecast, Company Ranking, Competitive Landscape, Growth Factors, Trends, and Pricing Analysis
    Segments Covered
    • Application
    • Region
    Regions Covered
    • North America
    • Latin America
    • Western Europe
    • Eastern Europe
    • South Asia & Pacific
    • East Asia
    • Middle East & Africa
    Key Countries Profiled
    • United States
    • Canada
    • Brazil
    • Mexico
    • Germany
    • United Kingdom
    • France
    • Spain
    • Italy
    • Poland
    • Russia
    • Czech Republic
    • Romania
    • India
    • Bangladesh
    • Australia
    • New Zealand
    • China
    • Japan
    • South Korea
    • GCC Countries
    • South Africa
    • Israel
    Key Companies Profiled
    • Open Banking Working Group (OBWG) UK
    • CAPS
    • Open Bank Project
    • Open API initiative
    • IXARIS Open Payment Ecosystem
    • Open Financial Exchange (OFX)
    • Financial Transaction Services (FinTS)
    • Banking Industry Architecture Network (BIAN)
    • W3C Web Payments Interest Group.
    • Wipro Limited
    Customization & PricingAvailable Upon Request
  16. d

    Income - ACS 2015-2019 - Tempe Tracts

    • catalog.data.gov
    • data.tempe.gov
    • +8more
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Income - ACS 2015-2019 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/income-acs-2015-2019-tempe-tracts-9863f
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    Notice: The U.S. Census Bureau is delaying the release of the 2016-2020 ACS 5-year data until March 2022. For more information, please read the Census Bureau statement regarding this matter. -----------------------------------------This layer shows household income ranges for households, families, married couple families, and nonfamily households (as defined by the U.S. Census). Data is from US Census American Community Survey (ACS) 5-year estimates and joined with Tempe census tracts.This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). Layer includes: <!--· Total households (of various types including households, families, married couple families, and nonfamily households as defined by the U.S. Census) <!--· Household income brackets <!--· Household median income in dollars <!--· Household mean income in dollars An 'N' entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census). Data is from US Census American Community Survey (ACS) 5-year estimates. Current Vintage: 2015-2019 ACS Table(s): S1901 (Not all lines of this ACS table are available in this feature layer.) Data downloaded from: Census Bureau's API for American Community Survey Date of Census update: December 10, 2020 National Figures: data.census.gov

  17. How do you determine buy or sell? (LON:API Stock Forecast) (Forecast)

    • kappasignal.com
    Updated Oct 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). How do you determine buy or sell? (LON:API Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/how-do-you-determine-buy-or-sell-lonapi.html
    Explore at:
    Dataset updated
    Oct 14, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    How do you determine buy or sell? (LON:API Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. c

    Global Cloud API Market Report 2025 Edition, Market Size, Share, CAGR,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Global Cloud API Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/cloud-api-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    Global Cloud API market size 2025 was XX Million. Cloud API Industry compound annual growth rate (CAGR) will be XX% from 2025 till 2033.

  19. a

    STATES

    • hub.arcgis.com
    • mce-data-uscensus.hub.arcgis.com
    • +1more
    Updated Feb 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2024). STATES [Dataset]. https://hub.arcgis.com/datasets/212eb5592f2b4ee68747b5ded129b8a6
    Explore at:
    Dataset updated
    Feb 4, 2024
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Income and Benefits. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households that make under $75,000 annually. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.Current Vintage: 2018-2022ACS Table(s): DP03Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18,2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.

  20. A

    County

    • data.amerigeoss.org
    csv, esri rest +4
    Updated Jan 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). County [Dataset]. https://data.amerigeoss.org/id/dataset/county11
    Explore at:
    csv, html, zip, kml, geojson, esri restAvailable download formats
    Dataset updated
    Jan 7, 2020
    Dataset provided by
    ESRI
    Description

    This layer shows median earnings by occupational group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Only full-time year-round workers included. Median earnings is based on earnings in past 12 months of survey. Occupation Groups based on Bureau of Labor Statistics (BLS)' Standard Occupation Classification (SOC).


    This layer is symbolized to show median earnings of the full-time, year-round civilian employed population. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.

    Current Vintage: 2014-2018
    ACS Table(s): B24021
    Date of API call: December 19, 2019
    National Figures: data.census.gov

    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.
    • Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).
    • Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.
    • Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.
    • Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:
      • The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
      • Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
      • The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.
      • The estimate is controlled. A statistical test for sampling variability is not appropriate.
      • The data for this geographic area cannot be displayed because the number of sample cases is too small.
      • NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M, K (2023). Finhubb Stock API - Datasets [Dataset]. http://doi.org/10.7910/DVN/PVEM40

Finhubb Stock API - Datasets

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 8, 2023
Dataset provided by
Harvard Dataverse
Authors
M, K
Description

Finnhub is the ultimate stock api in the market, providing real-time and historical price for global stocks with Rest API and websocket. We also support a tons of other financial data like stock fundamentals, analyst estimates, fundamental data and more. Download the file to access balance sheet of Amazon.

Search
Clear search
Close search
Google apps
Main menu