The API is powered by Google Earth Engine, and currently only supports pan-sharpened Landsat 8 imagery.
Our mission is to help you picture climate change and environmental changes happening on our home planet. Here you can search for and retrieve satellite images of Earth. Download them; export them to GoogleEarth; perform basic analysis. Tracking regional and global changes around the world just got easier.
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset. ERA5 replaces its predecessor, the ERA-Interim reanalysis. ERA5 MONTHLY provides aggregated values for each month for seven ERA5 climate reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind. Additionally, monthly minimum and maximum air temperature at 2m has been calculated based on the hourly 2m air temperature data. Monthly total precipitation values are given as monthly sums. All other parameters are provided as monthly averages. ERA5 data is available from 1940 to three months from real-time, the version in the EE Data Catalog is available from 1979. More information and more ERA5 atmospheric parameters can be found at the Copernicus Climate Data Store. Provider's Note: Monthly aggregates have been calculated based on the ERA5 hourly values of each parameter.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Report Covers Satellite-Based Earth Observation Market Trends and Opportunities, And It is Segmented by Service (Data, Value-added-service), Technology (Synthetic Aperture Radar, Optical), Application (Urban Development, Agriculture, Climate and Environmental Services, Energy, Infrastructure Monitoring, Disaster and Emergency Management, And Others), And Geography (North America, Europe, Asia-pacific, Latin America, The Middle East and Africa). The Market Sizes and Forecasts are Provided in Terms of Value (USD) for all the Above Segments.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
Matched boundary lines and polygons with names attributes for countries and sovereign states. Includes dependencies (French Polynesia), map units (U.S. Pacific Island Territories) and sub-national map subunits (Corsica versus mainland Metropolitan France).
An estimate of the spectra of the barest state (i.e., least vegetation) observed from imagery of the Australian continent collected by the Landsat 5, 7, and 8 satellites over a period of more than 30 years (1983 – 2018). The bands include BLUE (0.452 - 0.512), GREEN (0.533 - 0.590), RED, (0.636 - 0.673) NIR (0.851 - 0.879), SWIR1 (1.566 - 1.651) and SWIR2 (2.107 - 2.294) wavelength regions. The approach is robust to outliers (such as cloud, shadows, saturation, corrupted pixels) and also maintains the relationship between all the spectral wavelengths in the spectra observed through time. The product reduces the influence of vegetation and allows for more direct mapping of soil and rock mineralogy. This product complements the Landsat-8 Barest Earth which is based on the same algorithm but just uses Landsat8 satellite imagery from 2013-2108. Landsat-8’s OLI sensor provides improved signal-to-noise radiometric (SNR) performance quantised over a 12-bit dynamic range compared to the 8-bit dynamic range of Landsat-5 and Landsat-7 data. However the Landsat 30+ Barest Earth has a greater capacity to find the barest ground due to the greater temporal depth. Reference: Exposed Soil and Mineral Map of the Australian Continent Revealing the Land at its Barest - Dale Roberts, John Wilford and Omar Ghattas Ghattas (2019). Nature Communications, DOI: 10.1038/s41467-019-13276-1. https://www.nature.com/articles/s41467-019-13276-1
This statistic depicts the market size of the global Earth observation satellite data and services market in 2017 and 2023, broken down by technology. In 2017, the optical Earth observation satellite data and services market was sized at 4.7 billion U.S. dollars worldwide.
The objective of GEO is to fulfil a vision of a world where decisions and actions are informed by coordinated, comprehensive and sustained Earth Observation (EO). This is being pursued mainly through the added value of co-ordinating existing institutions, organised communities, space agencies, in-situ monitoring agencies, scientific institutions, research centres, universities, modelling centres, technology developers and other groups that deal with one or more aspects of EO. To reach this over arching goal, GEO focuses on capacity development in three dimensions: infrastructure, individuals and institutions. In the field of agriculture, the general goal is to promote the utilisation of Earth observations for advancing sustainable agriculture, aquaculture and fisheries. Key issues include early warning, risk assessment, food security, market efficiency and combating desertification. (Source: http://www.research-europe.com/index.php/2011/08/joao-soares-secretariat-expert-for-agriculture-group-on-earth-observations/)
Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.
Explore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.
EXPLORE TIMELAPSEThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.
EXPLORE DATASETSThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.
EXPLORE THE APIUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.
LEARN ABOUT THE CODE EDITORScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.
SEE CASE STUDIESThe objective of GEO is to fulfil a vision of a world where decisions and actions are informed by coordinated, comprehensive and sustained Earth Observation (EO). This is being pursued mainly through the added value of co-ordinating existing institutions, organized communities, space agencies, in-situ monitoring agencies, scientific institutions, research centres, universities, modelling centres, technology developers and other groups that deal with one or more aspects of EO. To reach this over arching goal, GEO focuses on capacity development in three dimensions: infrastructure, individuals and institutions. In the field of agriculture, the general goal is to promote the utilisation of Earth observations for advancing sustainable agriculture, aquaculture and fisheries. Key issues include early warning, risk assessment, food security, market efficiency and combating desertification.
EarthExplorerUse the USGS EarthExplorer (EE) to search, download, and order satellite images, aerial photographs, and cartographic products. In addition to data from the Landsat missions and a variety of other data providers, EE provides access to MODIS land data products from the NASA Terra and Aqua missions, and ASTER level-1B data products over the U.S. and Territories from the NASA ASTER mission. Registered users of EE have access to more features than guest users.Earth Explorer Distribution DownloadThe EarthExplorer user interface is an online search, discovery, and ordering tool developed by the United States Geological Survey (USGS). EarthExplorer supports the searching of satellite, aircraft, and other remote sensing inventories through interactive and textual-based query capabilities. Through the interface, users can identify search areas, datasets, and display metadata, browse and integrated visual services within the interface.The distributable version of EarthExplorer provides the basic software to provide this functionality. Users are responsible for verification of system recommendations for hosting the application on your own servers. By default, this version of our code is not hooked up to a data source so you will have to integrate the interface with your data. Integration options include service-based API's, databases, and anything else that stores data. To integrate with a data source simply replace the contents of the 'getDataset' and 'search' functions in the CWIC.php file.Distribution is being provided due to users requests for the codebase. The EarthExplorer source code is provided "As Is", without a warranty or support of any kind. The software is in the public domain; it is available to any government or private institution.The software code base is managed through the USGS Configuration Management Board. The software is managed through an automated configuration management tool that updates the code base when new major releases have been thoroughly reviewed and tested.Link: https://earthexplorer.usgs.gov/
NASA's Freeze/Thaw Earth System Data Record (FT-ESDR) Web Interface is a NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments) funded effort to provide a consistent long-term global data record of land surface freeze/thaw (FT) state dynamics for all vegetated regions where low temperatures are a major constraint to ecosystem processes. The FT measurement is derived from temporal change classification of global satellite microwave remote sensing time series, including passive microwave radiometry from the Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E), and radar scatterometry from SeaWinds-on-QuikSCAT. The ecological significance and basis of the FT measurement from satellite microwave remote sensing is summarized in the literature (e.g., see "Relevant Publications" section below). The FT-ESDR is designed to:
1) distinguish FT heterogeneity in accordance with mesoscale climate and landscape topographic features;
2) establish biophysical linkages between FT processes and vegetation productivity, respiration and associated land-atmosphere carbon exchange;
3) distinguish FT dynamics in accordance with episodic weather events, annual anomalies, periodic climate cycles and long-term climate change trajectories."
[Summary provided by the University of Montana.]
ERA5 ist die fünfte Generation der ECMWF-Atmosphärischen Reanalyse des globalen Klimas. Bei der Neuanalyse werden Modelldaten mit Beobachtungen aus der ganzen Welt zu einem weltweit vollständigen und konsistenten Datensatz kombiniert. ERA5 ersetzt seinen Vorgänger, die ERA-Interim-Reanalyse. ERA5 DAILY enthält für jeden Tag aggregierte Werte für sieben ERA5-Klimareanalyseparameter: …
ARCHIVE_STATUS, ,DATA_SET_TERSE_DESC,This data set contains the R_EDR data for the Galileo Orbiter PPR instrument for the period corresponding to the Earth-1 encounter observations in November-December 1990.
PERSIANN-CDR is a daily quasi-global precipitation product that spans the period from 1983-01-01 to present. The data is produced quarterly, with a typical lag of three months. The product is developed by the Center for Hydrometeorology and Remote Sensing at the University of California, Irvine (UC-IRVINE/CHRS) using Gridded Satellite (GridSat-B1) IR data that are derived from merging ISCCP B1 IR data, along with GPCP version 2.2.
This data set contains fifteen minute averaged rate data for all 64 EPD channels. The browse set covers the Earth 2 encounnter data from 1992 Day 311 through day 353. All available motor positions except zero are included in the averages.
THE EARTH SCIENCE GEOINQUIRY COLLECTION
http://www.esri.com/geoinquiries
To support Esri’s involvement in the White House ConnectED Initiative, GeoInquiry instructional materials using ArcGIS Online for Earth Science education are now freely available.
The Earth Science GeoInquiry collection contains 15 free, web-mapping activities that correspond and extend map-based concepts in leading middle school Earth science textbooks. The activities, developed with GISetc of Dallas, TX use a standard inquiry-based instructional model, require only 15 minutes for a teacher to deliver, and are device agnostic. The activities harmonize with the Next Generation Science Standards. Activity topics include:
Teachers, GeoMentors, and administrators can learn more at http://www.esri.com/geoinquiries
Shapefile created using satellite-derived land cover data and shaded relief presented with a light, natural palette suitable for making thematic and reference maps. Natural Earth I is available with ocean bottom data, or without. File size: 10,800 x 5,400 pixels.
Coloring based on land cover.
Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software. Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.
This collection contains satellite imagery or Earth Observations from space created by Geoscience Australia. Among others, the collection includes data from various satellite sensors including Landsat Thematic Mapper and Multi-Spectral Scanner, Terra and Aqua MODIS.
The API is powered by Google Earth Engine, and currently only supports pan-sharpened Landsat 8 imagery.