The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Between 1800 and 2021, the total population of each continent experienced consistent growth, however as growth rates varied by region, population distribution has fluctuated. In the early 19th century, almost 70 percent of the world's population lived in Asia, while fewer than 10 percent lived in Africa. By the end of this century, it is believed that Asia's share will fall to roughly 45 percent, while Africa's will be on course to reach 40 percent. 19th and 20th centuries Fewer than 2.5 percent of the world's population lived in the Americas in 1800, however the demographic transition, along with waves of migration, would see this share rise to almost 10 percent a century later, peaking at almost 14 percent in the 1960s. Europe's share of the global population also grew in the 19th century, to roughly a quarter in 1900, but fell thereafter and saw the largest relative decline during the 20th century. Asia, which has consistently been the world's most populous continent, saw its population share drop by the mid-1900s, but it has been around 60 percent since the 1970s. It is important to note that the world population has grown from approximately one to eight billion people between 1800 and the 2020s, and that declines in population distribution before 2020 have resulted from different growth rates across the continents. 21st century Africa's population share remained fairly constant throughout this time, fluctuating between 7.5 and 10 percent until the late-1900s, but it is set to see the largest change over the 21st century. As Europe's total population is now falling, and it is estimated that the total populations of Asia and the Americas will fall by the 2050s and 2070s respectively, rapid population growth in Africa will see a significant shift in population distribution. Africa's population is predicted to grow from 1.3 to 3.9 billion people over the next eight decades, and its share of the total population will rise to almost 40 percent. The only other continent whose population will still be growing at this time will be Oceania, although its share of the total population has never been more than 0.7 percent.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is extracted from https://en.wikipedia.org/wiki/List_of_countries_by_population_in_1800. Context: There s a story behind every dataset and heres your opportunity to share yours.Content: What s inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. Acknowledgements:We wouldn t be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.Inspiration: Your data will be in front of the world s largest data science community. What questions do you want to see answered?
The earliest point where scientists can make reasonable estimates for the population of global regions is around 10,000 years before the Common Era (or 12,000 years ago). Estimates suggest that Asia has consistently been the most populated continent, and the least populated continent has generally been Oceania (although it was more heavily populated than areas such as North America in very early years). Population growth was very slow, but an increase can be observed between most of the given time periods. There were, however, dips in population due to pandemics, the most notable of these being the impact of plague in Eurasia in the 14th century, and the impact of European contact with the indigenous populations of the Americas after 1492, where it took almost four centuries for the population of Latin America to return to its pre-1500 level. The world's population first reached one billion people in 1803, which also coincided with a spike in population growth, due to the onset of the demographic transition. This wave of growth first spread across the most industrially developed countries in the 19th century, and the correlation between demographic development and industrial or economic maturity continued until today, with Africa being the final major region to begin its transition in the late-1900s.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this project graph is : ourworldindata
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff7760f5a993dbf3c849819da7f49b423%2FPopulation-cartogram_World.png?generation=1709236376179460&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fb4be558ca2d6f2722de1bd99375d3e4d%2FAnnual-World-Population-since-10-thousand-BCE-1-768x724.png?generation=1709236383963029&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fc015d522dc682d896c50e3f62ff290de%2F2019-Revision--World-Population-Growth-1700-2100-768x563.png?generation=1709236391743933&alt=media" alt="">
For the vast majority of human existence, our global population remained a mere fraction of what it is today. However, the last few centuries have borne witness to an extraordinary transformation in human demography. In the year 1800, the global population stood at a modest one billion individuals. Fast forward to the present day, and we find ourselves amidst a staggering figure of over 8 billion people inhabiting our planet.
Yet, despite this exponential growth trajectory, demographers now project a fascinating shift on the horizon: the expectation that global population growth will plateau by the close of this century.
Within the vast repository of Our World in Data, we delve deeply into the intricacies of population dynamics, offering a comprehensive array of data, charts, and analyses elucidating the nuanced changes in population growth. From the geographical distribution of populations to temporal shifts and future projections, our platform serves as a rich tapestry of insights into this paramount aspect of human civilization.
One of the most illuminating tools at our disposal is the population cartogram—a unique visualization method that transcends traditional geographical maps to provide a more accurate depiction of global population distribution. Unlike conventional maps, which delineate territories based solely on landmass, population cartograms offer a perspective where countries are resized according to their respective populations.
In our exploration of the population cartogram for the year 2018, we uncover a myriad of revelations. Small nations characterized by high population densities manifest as enlarged entities, accentuating their significance on the global stage. Bangladesh, Taiwan, and the Netherlands emerge prominently, their amplified proportions underscoring their demographic density. Conversely, vast territories with comparatively sparse populations undergo a visual reduction in size. Countries like Canada, Mongolia, Australia, and Russia, despite their expansive landmasses, shrink in relative stature, highlighting the intriguing interplay between territory and population.
This innovative approach to mapping not only challenges conventional perceptions but also provides invaluable insights into the complex mosaic of human settlement patterns and demographic trends. By transcending the limitations of traditional cartography, population cartograms offer a nuanced lens through which to perceive the evolving dynamics of our global community.
To delve deeper into the nuances of this population cartogram and its implications, we invite you to explore our comprehensive article dedicated to this fascinating subject. Within its pages, you will find a detailed analysis, accompanied by captivating visuals and insightful commentary, elucidating the significance of population cartograms in understanding our world.
At Our World in Data, we remain committed to unraveling the complexities of global population dynamics, offering a platform that fosters informed discourse and deepens our understanding of the forces shaping our collective future. Join us on this illuminating journey as we navigate the ever-changing landscape of human demography, charting a course towards a more enlightened tomorrow.
Until the 19th century, population growth across the globe was incredibly low. In the first millennium of the Common Era, the world's population grew by an average of just 0.02 percent each year. In Western Europe and Asia, the populations on either side of the millennium were almost the exact same. It was only in the centuries that followed where population growth began to increase, however it was still very low until the 1800s.
Beginning in the 19th century, a phenomenon known as the demographic transition took place, and the world's population began to grow exponentially. The population of the Americas in particular saw the highest average growth rates in these years, due to the high levels of migration and their smaller starting population size in 1820 compared to most other regions. Overall, the average global population growth rate in the period between 1820 and 1998 was roughly six times higher than the preceding eight centuries, and almost 50 times higher than the millennium before that.
description: The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct human interaction with ecosystems, including agriculture and urbanization c. 2000. Potential natural vegetation, biomes, such as tropical rainforests or grasslands, are based on global vegetation patterns related to climate and geology. Anthropogenic transformation within each biome is approximated using population density, agricultural intensity (cropland and pasture) and urbanization. This data set is part of a time series for the years 1700, 1800, 1900, and 2000 that provides global patterns of historical transformation of the terrestrial biosphere during the Industrial Revolution.; abstract: The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct human interaction with ecosystems, including agriculture and urbanization c. 2000. Potential natural vegetation, biomes, such as tropical rainforests or grasslands, are based on global vegetation patterns related to climate and geology. Anthropogenic transformation within each biome is approximated using population density, agricultural intensity (cropland and pasture) and urbanization. This data set is part of a time series for the years 1700, 1800, 1900, and 2000 that provides global patterns of historical transformation of the terrestrial biosphere during the Industrial Revolution.
In 1800, the population of the region of present-day India was approximately 169 million. The population would grow gradually throughout the 19th century, rising to over 240 million by 1900. Population growth would begin to increase in the 1920s, as a result of falling mortality rates, due to improvements in health, sanitation and infrastructure. However, the population of India would see it’s largest rate of growth in the years following the country’s independence from the British Empire in 1948, where the population would rise from 358 million to over one billion by the turn of the century, making India the second country to pass the billion person milestone. While the rate of growth has slowed somewhat as India begins a demographics shift, the country’s population has continued to grow dramatically throughout the 21st century, and in 2020, India is estimated to have a population of just under 1.4 billion, well over a billion more people than one century previously. Today, approximately 18% of the Earth’s population lives in India, and it is estimated that India will overtake China to become the most populous country in the world within the next five years.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Labour Relations in the United States: 1800An abridged data format, created by Daan Jansen (IISH) and continuing on earlier work by Joris Kok (IISH), is being offered as an alternative in October 2020. This new version of the dataset includes only records that contain labour relations, leaving out all population data. This update also involved (depending on the dataset in question, substantial) data cleaning, separating male and female individuals, and removing any duplicate records. Hence, the aggregated number of people mentioned in these updated datasets should equal the total population.
Labour Relations in Japan: 1800, 2000
An abridged data format, created by Daan Jansen (IISH) and continuing on earlier work by Joris Kok (IISH), is being offered as an alternative in October 2020. This new version of the dataset includes only records that contain labour relations, leaving out all population data. This update also involved (depending on the dataset in question, substantial) data cleaning, separating male and female individuals, and removing any duplicate records. Hence, the aggregated number of people mentioned in these updated datasets should equal the total population.
In 1800, the population of Japan was just over 30 million, a figure which would grow by just two million in the first half of the 19th century. However, with the fall of the Tokugawa shogunate and the restoration of the emperor in the Meiji Restoration of 1868, Japan would begin transforming from an isolated feudal island, to a modernized empire built on Western models. The Meiji period would see a rapid rise in the population of Japan, as industrialization and advancements in healthcare lead to a significant reduction in child mortality rates, while the creation overseas colonies would lead to a strong economic boom. However, this growth would slow beginning in 1937, as Japan entered a prolonged war with the Republic of China, which later grew into a major theater of the Second World War. The war was eventually brought to Japan's home front, with the escalation of Allied air raids on Japanese urban centers from 1944 onwards (Tokyo was the most-bombed city of the Second World War). By the war's end in 1945 and the subsequent occupation of the island by the Allied military, Japan had suffered over two and a half million military fatalities, and over one million civilian deaths.
The population figures of Japan were quick to recover, as the post-war “economic miracle” would see an unprecedented expansion of the Japanese economy, and would lead to the country becoming one of the first fully industrialized nations in East Asia. As living standards rose, the population of Japan would increase from 77 million in 1945, to over 127 million by the end of the century. However, growth would begin to slow in the late 1980s, as birth rates and migration rates fell, and Japan eventually grew to have one of the oldest populations in the world. The population would peak in 2008 at just over 128 million, but has consistently fallen each year since then, as the fertility rate of the country remains below replacement level (despite government initiatives to counter this) and the country's immigrant population remains relatively stable. The population of Japan is expected to continue its decline in the coming years, and in 2020, it is estimated that approximately 126 million people inhabit the island country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A growing threat to male infertility has become a major concern for the human population due to the advent of modern technologies as a source of radiofrequency radiation (RFR). Since these technologies have become an integral part of our daily lives, thus, it becomes necessary to know the impression of such radiations on human health. In view of this, the current study aims to focus on the biological effects of radiofrequency electromagnetic radiations on mouse Leydig cell line (TM3) in a time-dependent manner. TM3 cells were exposed to RFR emitted from 4G cell phone and also exposed to a particular frequency of 1800 MHz and 2450 MHz from RFR exposure system. The cells were then evaluated for different parameters such as cell viability, cell proliferation, testosterone production, and ROS generation. A considerable reduction in the testosterone levels and proliferation rate of TM3 cells were observed at 120 min of exposure as compared to the control group in all exposure settings. Conversely, the intracellular ROS levels showed a significant rise at 60, 90 and 120 min of exposure in both mobile phone and 2450 MHz exposure groups. However, RFR treatment for different time durations (15, 30, 45, 60, 90, and 120 min) did not have significant effect on cell viability at any of the exposure condition (2450 MHz, 1800 MHz, and mobile phone radiation). Therefore, our findings concluded with the negative impact of radiofrequency electromagnetic radiations on Leydig cell’s physiological functions, which could be a serious concern for male infertility. However, additional studies are required to determine the specific mechanism of RFR action as well as its long-term consequences.
In 1800, the population of the territory that makes up present-day Thailand was approximately 4.7 million people. As part of the kingdom of Siam, the population of Thailand would grow gradually through the 19 th century, with much of the population growth being driven by Chinese emigration from southern Qing China into Siam, in search of work and refuge from instability in their home country. This migrant influx would continue throughout the century, with estimates suggesting that the Chinese population in Siam grew from 230,000 in 1825, to over 792,000 in 1910; by 1932, over 12 percent of the population in modern-day Thailand was ethnically Chinese. Migration from China would see another surge under the reign of Vajiravudh, as the "Warlord era" in China, after the fall of the Qing dynasty, would see entire families of Chinese immigrants arriving in Thailand. While immigration would slow in later years, Chinese-Thai would remain a significant demographic in Thailand’s population, both as one of the largest overseas Chinese populations, and accounting for an estimated 11-14 percent of the total Thailand population in 2012.
Population growth would slow somewhat in the 1930s, as several rebellions and coups, paired with a rise in anti-Chinese sentiment in the country, would result in a sharp decline in immigration to the country. In the years following the Second World War, the population of Thailand would begin to grow rapidly, following a wave of urbanization and a significant increase in standard of living throughout the country. As a result, the population of Thailand would rise from approximately 20 million in 1950, to just under 63 million by the turn of the century just 50 years later. This population growth would slow somewhat as the country would continue to modernize in the 2000s, and in 2020, it is estimated that just under 70 million people live in Thailand.
The RCS-Dem dataset reports estimates of religious demographics, both country by country and region by region. RCS was created to fulfill the unmet need for a dataset on the religious dimensions of countries of the world, with the state-year as the unit of observation. It covers 220 independent states, 26 selected substate entities, and 41 geographically separated dependencies, for every year from 2015 back to 1900 and often 1800 (more than 42,000 state-years). It estimates populations and percentages of adherents of 100 religious denominations including second level subdivisions within Christianity and Islam, along with several complex categories such as "Western Christianity." RCS is designed for easy merger with datasets of the Correlates of War and Polity projects, datasets by the United Nations, the Religion And State datasets by Jonathan Fox, and the ARDA national profiles.
The region of present-day China has historically been the most populous region in the world; however, its population development has fluctuated throughout history. In 2022, China was overtaken as the most populous country in the world, and current projections suggest its population is heading for a rapid decline in the coming decades. Transitions of power lead to mortality The source suggests that conflict, and the diseases brought with it, were the major obstacles to population growth throughout most of the Common Era, particularly during transitions of power between various dynasties and rulers. It estimates that the total population fell by approximately 30 million people during the 14th century due to the impact of Mongol invasions, which inflicted heavy losses on the northern population through conflict, enslavement, food instability, and the introduction of bubonic plague. Between 1850 and 1870, the total population fell once more, by more than 50 million people, through further conflict, famine and disease; the most notable of these was the Taiping Rebellion, although the Miao an Panthay Rebellions, and the Dungan Revolt, also had large death tolls. The third plague pandemic also originated in Yunnan in 1855, which killed approximately two million people in China. 20th and 21st centuries There were additional conflicts at the turn of the 20th century, which had significant geopolitical consequences for China, but did not result in the same high levels of mortality seen previously. It was not until the overlapping Chinese Civil War (1927-1949) and Second World War (1937-1945) where the death tolls reached approximately 10 and 20 million respectively. Additionally, as China attempted to industrialize during the Great Leap Forward (1958-1962), economic and agricultural mismanagement resulted in the deaths of tens of millions (possibly as many as 55 million) in less than four years, during the Great Chinese Famine. This mortality is not observable on the given dataset, due to the rapidity of China's demographic transition over the entire period; this saw improvements in healthcare, sanitation, and infrastructure result in sweeping changes across the population. The early 2020s marked some significant milestones in China's demographics, where it was overtaken by India as the world's most populous country, and its population also went into decline. Current projections suggest that China is heading for a "demographic disaster", as its rapidly aging population is placing significant burdens on China's economy, government, and society. In stark contrast to the restrictive "one-child policy" of the past, the government has introduced a series of pro-fertility incentives for couples to have larger families, although the impact of these policies are yet to materialize. If these current projections come true, then China's population may be around half its current size by the end of the century.
Timor-Leste experienced a fundamental social and economic upheaval after its people voted for independence from Indonesia in a referendum in August 1999. Population was displaced, and public and private infrastructure was destroyed or rendered inoperable. Soon after the violence ceased, the country began rebuilding itself with the support from UN agencies, the international donor community and NGOs. The government laid out a National Development Plan (NDP) with two central goals: to promote rapid, equitable and sustainable economic growth and to reduce poverty.
Formulating a national plan and poverty reduction strategy required data on poverty and living standards, and given the profound changes experienced, new data collection had to be undertaken to accurately assess the living conditions in the country. The Planning Commission of the Timor-Leste Transitional Authority undertook a Poverty Assessment Project along with the World Bank, the Asian Development Bank, the United Nations Development Programme and the Japanese International Cooperation Agency (JICA).
This project comprised three data collection activities on different aspects of living standards, which taken together, provide a comprehensive picture of well-being in Timor-Leste. The first component was the Suco Survey, which is a census of all 498 sucos (villages) in the country. It provides an inventory of existing social and physical infrastructure and of the economic characteristics of each suco, in addition to aldeia (hamlet) level population figures. It was carried out between February and April 2001.
A second element was the Timor-Leste Living Standards Measurement Survey (TLSS). This is a household survey with a nationally representative sample of 1,800 families from 100 sucos. It was designed to diagnose the extent, nature and causes of poverty, and to analyze policy options facing the country. It assembles comprehensive information on household demographics, housing and assets, household expenditures and some components of income, agriculture, labor market data, basic health and education, subjective perceptions of poverty and social capital.
Data collection was undertaken between end August and November 2001.
The final component was the Participatory Potential Assessment (PPA), which is a qualitative community survey in 48 aldeias in the 13 districts of the country to take stock of their assets, skills and strengths, identify the main challenges and priorities, and formulate strategies for tackling these within their communities. It was completed between November 2001 and January 2002.
National coverage. Domains: Urban/rural; Agro-ecological zones (Highlands, Lowlands, Western Region, Eastern Region, Central Region)
Sample survey data [ssd]
SAMPLE SIZE AND ANALYTIC DOMAINS
A survey relies on identifying a subgroup of a population that is representative both for the underlying population and for specific analytical domains of interest. The main objective of the TLSS is to derive a poverty profile for the country and salient population groups. The fundamental analytic domains identified are the Major Urban Centers (Dili and Baucau), the Other Urban Centers and the Rural Areas. The survey represents certain important sub-divisions of the Rural Areas, namely two major agro-ecologic zones (Lowlands and Highlands) and three broad geographic regions (West, Center and East). In addition to these domains, we can separate landlocked sucos (Inland) from those with sea access (Coast), and generate categories merging rural and urban strata along the geographic, altitude, and sea access dimensions. However, the TLSS does not provide detailed indicators for narrow geographic areas, such as postos or even districts. [Note: Timor-Leste is divided into 13 major units called districts. These are further subdivided into 67 postos (subdistricts), 498 sucos (villages) and 2,336 aldeias (sub-villages). The administrative structure is uniform throughout the country, including rural and urban areas.]
The survey has a sample size of 1,800 households, or about one percent of the total number of households in Timor-Leste. The experience of Living Standards Measurement Surveys in many countries - most of them substantially larger than Timor-Leste - has shown that samples of that size are sufficient for the requirements of a poverty assessment.
The survey domains were defined as follows. The Urban Area is divided into the Major Urban Centers (the 31 sucos in Dili and the 6 sucos in Baucau) and the Other Urban Centers (the remaining 34 urban sucos outside Dili and Baucau). The rest of the country (427 sucos in total) comprises the Rural Area. The grouping of sucos into urban and rural areas is based on the Indonesian classification. In addition, we separated rural sucos both by agro-ecological zones and geographic areas. With the help of the Geographic Information System developed at the Department of Agriculture, sucos were subsequently qualified as belonging to the Highlands or the Lowlands depending on the share of their surface above and below the 500 m level curve. The three westernmost districts (Oecussi, Bobonaro and Cova Lima) constitute the Western Region, the three easternmost districts (Baucau, Lautem and Viqueque) the Eastern Region, and the remaining seven districts (Aileu, Ainaro, Dili, Ermera, Liquica, Manufahi and Manatuto) belong to the Central Region.
SAMPLING STRATA AND SAMPLE ALLOCATION
Our next step was to ensure that each analytical domain contained a sufficient number of households. Assuming a uniform sampling fraction of approximately 1/100, a non-stratified 1,800-household sample would contain around 240 Major Urban households and 170 Other Urban households -too few to sustain representative and significant analyses. We therefore stratified the sample to separate the two urban areas from the rural areas. The rural strata were large enough so that its implicit stratification along agro-ecological and geographical dimensions was sufficient to ensure that these dimensions were represented proportionally to their share of the population. The final sample design by strata was as follows: 450 households in the Major Urban Centers (378 in Dili and 72 in Baucau), 252 households in the Other Urban Centers and 1,098 households in the Rural Areas.
SAMPLING STRATEGY
The sampling of households in each stratum, with the exception of Urban Dili, followed a 3-stage procedure. In the first stage, a certain number of sucos were selected with probability proportional to size (PPS). Hence 4 sucos were selected in Urban Baucau, 14 in Other Urban Centers and 61 in the Rural Areas. In the second stage, 3 aldeias in each suco were selected, again with probability proportional to size (PPS). In the third stage, 6 households were selected in each aldeia with equal probability (EP). This implies that the sample is approximately selfweighted within the stratum: all households in the stratum had the same chance of being visited by the survey.
A simpler and more efficient 2-stage process was used for Urban Dili. In the first stage, 63 aldeias were selected with PPS and in the second stage 6 households with equal probability in each aldeia (for a total sample of 378 households). This procedure reduces sampling errors since the sample will be spread more than with the standard 3-stage process, but it can only be applied to Urban Dili as only there it was possible to sort the selected aldeias into groups of 3 aldeias located in close proximity of each other.
HOUSEHOLD LISTING
The final sampling stage requires choosing a certain number of households at random with equal probability in each of the aldeias selected by the previous sampling stages. This requires establishing the complete inventory of all households in these aldeias - a field task known as the household listing operation. The household listing operation also acquires importance as a benchmark for assessing the quality of the population data collected by the Suco Survey, which was conducted in February-March 2001. At that time, the number of households currently living in each aldeia was asked from the suco and aldeia chiefs, but there are reasons to suspect that these figures are biased. Specifically, certain suco and aldeia chiefs may have answered about households belonging, rather than currently living, in the aldeias, whereas others may have faced perverse incentives to report figures different from the actual ones. These biases are believed to be more serious in Dili than in the rest of the country.
Two operational approaches were considered for the household listing. One is the classical doorto-door (DTD) method that is generally used in most countries for this kind of operations. The second approach - which is specific of Timor-Leste - depends on the lists of families that are kept by most suco and aldeia chiefs in their offices. The prior-list-dependent (PLD) method is much faster, since it can be completed by a single enumerator in each aldeia, working most of the time in the premises of the suco or aldeia chief; however, it can be prone to biases depending on the accuracy and timeliness of the family lists.
After extensive empirical testing of the weaknesses and strengths of the two alternatives, we decided to use the DTD method in Dili and an improved version of the PLD method elsewhere. The improvements introduced to the PLD consisted in clarifying the concept of a household "currently living in the aldeia", both by intensive training and supervision of the enumerators and by making its meaning explicit in the form's wording (it means that the household members are regularly eating and sleeping in the aldeia at the time of the operation). In addition,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 3: Data from the analysis of isoform- 1 and isoform- 8 of TP53 human gene.
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.