Facebook
TwitterWhereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.55 billion inhabitants on the continent at the beginning of 2025, the number of inhabitants is expected to reach 3.81 billion by 2100. In total, the global population is expected to reach nearly 10.18 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2024. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.
Facebook
TwitterBefore 2025, the world's total population is expected to reach eight billion. Furthermore, it is predicted to reach over 10 billion in 2060, before slowing again as global birth rates are expected to decrease. Moreover, it is still unclear to what extent global warming will have an impact on population development. A high share of the population increase is expected to happen on the African continent.
Facebook
TwitterThe world's population first reached one billion people in 1805, and reached eight billion in 2022, and will peak at almost 10.2 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two-thirds of the world's population lives in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a few years later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Facebook
TwitterUntil the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
Facebook
TwitterThese charts shows the world trend in urban populations, people living in cities, from the year 1800 to 2100.
Facebook
Twitterhttps://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/
This dataset provides comprehensive global demographic and socioeconomic indicators for each country, compiled for the year 2024. It includes data on population sizes, growth rates, fertility rates, migration, urbanization, and other critical factors that influence global social and economic trends.
Country Name: The name of each country or region included in the dataset.
Population (2024): Estimated total population of each country for the year 2024, measured in millions or billions.
Population Growth Rate: The annual percentage change in population from one year to the next. It highlights whether the population is growing or declining.
Urbanization Percentage: The proportion of the population living in urban areas, indicating trends in urban migration and the shift from rural to urban living.
Fertility Rate: The average number of children born per woman of childbearing age, a key indicator of population reproduction levels.
Median Age: The median age of the population, reflecting the age distribution and helping to assess population aging or youthfulness.
Life Expectancy at Birth: The average number of years a newborn is expected to live, assuming current mortality rates persist.
Infant Mortality Rate: The number of deaths of infants under one year of age per 1,000 live births, a key indicator of healthcare quality and access.
GDP (Gross Domestic Product): The total monetary or market value of all the goods and services produced within a country’s borders in a given time period (usually measured annually in USD).
GDP per Capita: GDP divided by the total population, reflecting the average economic output per person and serving as a measure of the average income or economic standard of living.
Human Development Index (HDI): A composite index that considers life expectancy, education, and income per capita to provide an overall measure of human development.
Applications of the Dataset: Policy and Development Analysis: Governments, international organizations, and think tanks can use this data to craft development policies, allocate resources, and address issues such as urbanization, aging populations, and fertility rates.
Economic Forecasting and Analysis: Economists and financial institutions can leverage this data for macroeconomic analysis, forecasting, and investment decisions, especially using indicators like GDP, GDP per capita, and HDI.
Social and Health Research: Public health organizations can track health indicators like life expectancy, infant mortality rates, and fertility rates to guide public health interventions and strategies.
Education and Demography: Educators and researchers in the fields of demography, sociology, and global studies can use this dataset to analyze population trends, migration patterns, and social changes across the globe.
The data is sourced from reputable international organizations including the United Nations, the World Bank, the World Health Organization (WHO), the International Monetary Fund (IMF), and other national statistical agencies.
Use: This dataset is intended for general research, educational, and analytical purposes. It provides a snapshot of global demographic trends and socioeconomic conditions as of 2024. Limitations: While the data is collected from reliable sources, estimates for certain countries may vary slightly due to differing methods of data collection or reporting across regions. Additionally, as some countries may not have updated data for 2024, projections or estimates have been used where necessary.
Facebook
TwitterThis layer shares SEDAC's population projections for U.S. counties for 2020-2100 in increments of 5 years, for each of five population projection scenarios known as Shared Socioeconomic Pathways (SSPs). This layer supports mapping, data visualizations, analysis and data exports. Before using this layer, read: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview by Keywan Riahi, Detlef P. van Vuuren, Elmar Kriegler, Jae Edmonds, Brian C. O’Neill, Shinichiro Fujimori, Nico Bauer, Katherine Calvin, Rob Dellink, Oliver Fricko, Wolfgang Lutz, Alexander Popp, Jesus Crespo Cuaresma, Samir KC, Marian Leimbach, Leiwen Jiang, Tom Kram, Shilpa Rao, Johannes Emmerling, Kristie Ebi, Tomoko Hasegawa, Petr Havlik, Florian Humpenöder, Lara Aleluia Da Silva, Steve Smith, Elke Stehfest, Valentina Bosetti, Jiyong Eom, David Gernaat, Toshihiko Masui, Joeri Rogelj, Jessica Strefler, Laurent Drouet, Volker Krey, Gunnar Luderer, Mathijs Harmsen, Kiyoshi Takahashi, Lavinia Baumstark, Jonathan C. Doelman, Mikiko Kainuma, Zbigniew Klimont, Giacomo Marangoni, Hermann Lotze-Campen, Michael Obersteiner, Andrzej Tabeau, Massimo Tavoni. Global Environmental Change, Volume 42, 2017, Pages 153-168, ISSN 0959-3780, https://doi.org/10.1016/j.gloenvcha.2016.05.009. From the 2017 paper: "The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature." According to SEDAC, the purpose of this data is: "To provide subnational (county) population projection scenarios for the United States essential for understanding long-term demographic changes, planning for the future, and decision-making in a variety of applications." According to Francesco Bassetti of Foresight, "The SSP’s baseline worlds are useful because they allow us to see how different socioeconomic factors impact climate change. They include: a world of sustainability-focused growth and equality (SSP1); a “middle of the road” world where trends broadly follow their historical patterns (SSP2); a fragmented world of “resurgent nationalism” (SSP3); a world of ever-increasing inequality (SSP4);a world of rapid and unconstrained growth in economic output and energy use (SSP5).There are seven sublayers, each with county boundaries and an identical set of attribute fields containing projections for these seven groupings across the five SSPs and nine decades.Total PopulationBlack Non-Hispanic PopulationWhite Non-Hispanic PopulationOther Non-Hispanic PopulationHispanic PopulationMale PopulationFemale Population Methodology: Documentation for the Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, v1 (2020 – 2100) Data currency: This layer was created from a shapefile downloaded April 18, 2023 from SEDAC's Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, v1 (2020 – 2100) Enhancements found in this layer: Every field was given a field alias and field description created from SEDAC's Data Dictionary downloaded April 18, 2023. Citation: Hauer, M., and Center for International Earth Science Information Network - CIESIN - Columbia University. 2021. Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/dv72-s254. Accessed 18 April 2023. Hauer, M. E. 2019. Population Projections for U.S. Counties by Age, Sex, and Race Controlled to Shared Socioeconomic Pathway. Scientific Data 6: 190005. https://doi.org/10.1038/sdata.2019.5. Distribution Liability: CIESIN follows procedures designed to ensure that data disseminated by CIESIN are of reasonable quality. If, despite these procedures, users encounter apparent errors or misstatements in the data, they should contact SEDAC User Services at +1 845-465-8920 or via email at ciesin.info@ciesin.columbia.edu. Neither CIESIN nor NASA verifies or guarantees the accuracy, reliability, or completeness of any data provided. CIESIN provides this data without warranty of any kind whatsoever, either expressed or implied. CIESIN shall not be liable for incidental, consequential, or special damages arising out of the use of any data provided by CIESIN.
Facebook
Twitterhttps://www.quandl.com/about/termshttps://www.quandl.com/about/terms
Units: Millions of People. Source: Author's calculations from Angus Maddison's historical series, 'Historical statistics of the world economy 1-2008' (February 2010), United Nations/World Bank's official series for 1990-2012 (Octobre 2012), et UN official projections for 2012-2100 (UN Population Prospects, April 2011 version) (central scenario, then high scenario, then low scenario). Russia was included in Europe, and former Central Asia Republiques et Oceania in Asia. All the details are available in the followong excel files: population data 0-2012 are directly copied from table S1.2; projections directly copied from file WorldGDP.xls sheets TableW8, TableW8H et Table W8L
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive global population dynamics data, spanning from 1950 to 2100. It includes historical estimates and medium-scenario projections from the United Nations World Population Prospects 2024 edition. Covering 237 countries or areas, this dataset offers researchers, policymakers, and data enthusiasts a valuable resource for analyzing long-term demographic trends and their potential impacts across a 150-year period.
Key features of this dataset include:
This dataset is ideal for:
Whether you're a data scientist, historian, policymaker, or social researcher, this dataset offers a wealth of information to explore and analyze global population dynamics across a century and a half.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset consists of World Population from 1955 to 2023
Year: Year is from 1955 to 2023 Population: Count of the world's population Yearly % Change: Percentage of yearly change in population Yearly Change: Increase in Yearly Change in Population Median Age: Median Age of Population Fertility Rate: Fertility Rate from 1955 to 2015 with an interval of 5 years and from 2015 to 2020 yearly. Density: Population Density is in (P/Km²)
This dataset consists of World Population from 1951 to 2020
Year: Year is from 1951 to 2020 World Population: Count of the world population Yearly Change: Percentage of yearly change in population Net Change: Change in Population Density: Population Density is in (P/Km²) Urban Pop: Count of Urban Population count Median Age: Median Age of Population Urban Pop%: percentage of Urban Population% Fertility Rate: Fertility Rate from 1955 to 2015 with an interval of 5 years and from 2015 to 2020 yearly.
This dataset contains world population projections from 2020-2100 Year: From 2020-2100 World Population: Count of World Population Yearly Change(%): Percentage yearly change Net Change: Net change in population Density(P/Km²): Population Density is in (P/Km²)
This dataset contains the Population across regions in the Year 2020 Region: Name of Region Population(2020): Population in 2020 Yearly Change(%): Percentage yearly change Net Change: Net change in population Density(P/Km²): Population Density is in (P/Km²) Land Area(Km²): Land Area of Region in Km² Migrants(net): The count of Migrants, has a negative value which indicates the count of people who migrated from that region to another region. Fert.Rate: Fertility Rate Med.Age: Median Age of Population Urban Pop %: Urban Population Percentage World Share: World Share of Population
This dataset contains the population forecasts from 2020-2050 with an interval of 5 years. Year (July 1): Year Population: Total count of the population Yearly % Change: Percentage Change in population yearly Yearly Change: Yearly change in population Median Age: Median Age of Population Fertility Rate: Fertility Rate Density (P/Km²): Population Density is in (P/Km²)
Facebook
TwitterUntil 2100, the world's population is expected to be ageing. Whereas people over 60 years made up less than 13 percent of the world's population in 2024, this share is estimated to reach 28.8 percent in 2100. On the other hand, the share of people between zero and 14 years was expected to decrease by almost ten percentage points over the same period.
Facebook
TwitterThe world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
CONTENT
The US Census Bureau's world population clock estimated that the global population as of September 2022 was 7,922,312,800 people and was expected to reach 8 billion by mid-November of 2022. This total far exceeds the 2015 world population of 7.2 billion. The world's population continues to increase by roughly 140 people per minute, with births outweighing deaths in most countries.
Overall, however, the rate of population growth has been slowing for several decades. This slowdown is expected to continue until the rate of population growth reaches zero (an equal number of births and deaths) around 2080-2100, at a population of approximately 10.4 billion people. After this time, the population growth rate is expected to turn negative, resulting in global population decline.
Countries with more than 1 billion people China is currently the most populous country in the world, with a population estimated at more than 1.42 billion as of September 2022. Only one other country in the world boasts a population of more than 1 billion people: India, whose population is estimated to be 1.41 billion people—and rising.
Facebook
TwitterThe Country-Level Population and Downscaled Projections Based on Special Report on Emissions Scenarios (SRES) A1, B1, and A2 Scenarios, 1990-2100, were adopted in 2000 from population projections realized at the International Institute for Applied Systems Analysis (IIASA) in 1996. The Intergovernmental Panel on Climate Change (IPCC) SRES A1 and B1 scenarios both used the same IIASA "rapid" fertility transition projection, which assumes low fertility and low mortality rates. The SRES A2 scenario used a corresponding IIASA "slow" fertility transition projection (high fertility and high mortality rates). Both IIASA low and high projections are performed for 13 world regions including North Africa, Sub-Saharan Africa, China and Centrally Planned Asia, Pacific Asia, Pacific OECD, Central Asia, Middle East, South Asia, Eastern Europe, European part of the former Soviet Union, Western Europe, Latin America, and North America. This data set is produced and distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).
Facebook
TwitterBetween 1800 and 2021, the total population of each continent experienced consistent growth, however as growth rates varied by region, population distribution has fluctuated. In the early 19th century, almost 70 percent of the world's population lived in Asia, while fewer than 10 percent lived in Africa. By the end of this century, it is believed that Asia's share will fall to roughly 45 percent, while Africa's will be on course to reach 40 percent. 19th and 20th centuries Fewer than 2.5 percent of the world's population lived in the Americas in 1800, however the demographic transition, along with waves of migration, would see this share rise to almost 10 percent a century later, peaking at almost 14 percent in the 1960s. Europe's share of the global population also grew in the 19th century, to roughly a quarter in 1900, but fell thereafter and saw the largest relative decline during the 20th century. Asia, which has consistently been the world's most populous continent, saw its population share drop by the mid-1900s, but it has been around 60 percent since the 1970s. It is important to note that the world population has grown from approximately one to eight billion people between 1800 and the 2020s, and that declines in population distribution before 2020 have resulted from different growth rates across the continents. 21st century Africa's population share remained fairly constant throughout this time, fluctuating between 7.5 and 10 percent until the late-1900s, but it is set to see the largest change over the 21st century. As Europe's total population is now falling, and it is estimated that the total populations of Asia and the Americas will fall by the 2050s and 2070s respectively, rapid population growth in Africa will see a significant shift in population distribution. Africa's population is predicted to grow from 1.3 to 3.9 billion people over the next eight decades, and its share of the total population will rise to almost 40 percent. The only other continent whose population will still be growing at this time will be Oceania, although its share of the total population has never been more than 0.7 percent.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General Information
The Pop-AUT database was developed for the DISCC-AT project, which required subnational population projections for Austria consistent with the updated Shared Socio-Economic Pathways (SSPs). For this database, the most recent version of the nationwide SSP population projections (IIASA-WiC POP 2023) are spatially downscaled, offering a detailed perspective at the subnational level in Austria. Recognizing the relevance of this information for a wider audience, the data has been made publicly accessible through an interactive dashboard. There, users are invited to explore how the Austrian population is projected to evolve under different SSP scenarios until the end of this century.
Methodology
The downscaling process of the nationwide Shared Socioeconomic Pathways (SSP) population projections is a four-step procedure developed to obtain subnational demographic projections for Austria. In the first step, population potential surfaces for Austria are derived. These indicate the attractiveness of a location in terms of habitability and are obtained using machine learning techniques, specifically random forest models, along with geospatial information such as land use, roads, elevation, distance to cities, and elevation (see, e.g., Wang et al. 2023).
The population potential surfaces play a crucial role in distributing the Austrian population effectively across the country. Calculations are based on the 1×1 km spatial resolution database provided by Wang et al. (2023), covering all SSPs in 5-year intervals from 2020 to 2100.
Moving to the second step, the updated nationwide SSP population projections for Austria (IIASA-WiC POP 2023) are distributed to all 1×1 km grid cells within the country. This distribution is guided by the previously computed grid cell-level population potential surfaces, ensuring a more granular representation of demographic trends.
The base year for all scenarios is 2015, obtained by downscaling the UN World Population Prospects 2015 count for Austria using the WorldPop (2015) 1×1 km population count raster.
In the third step, the 1×1 km population projections are temporally interpolated to obtain yearly projections for all SSP scenarios spanning the period from 2015 to 2100.
The final step involves the spatial aggregation of the gridded SSP-consistent population projections to the administrative levels of provinces (Bundesländer), districts (Bezirke), and municipalities (Gemeinden).
Dashboard
The data can be explored interactively through a dashboard.
Data Inputs
Updated nationwide SSP population projections: IIASA-WiC POP (2023) (https://zenodo.org/records/7921989)
Population potential surfaces: Wang, X., Meng, X., & Long, Y. (2022). Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Scientific Data, 9(1), 563.
Shapefiles: data.gv.at
WorldPop 2015: WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00647
Version
This is version 1.0, built upon the Review-Phase 2 version of the updated nationwide SSP population projections (IIASA-WiC POP 2023). Once these projections are revised, this dataset will be accordingly updated.
File Organization
The SSP-consistent population projections for Austria are accessible in two formats: .csv files for administrative units (provinces = Bundesländer, districts = Politische Bezirke, municipalities = Gemeinden) and 1×1 km raster files in GeoTIFF and NetCDF formats. All files encompass annual population counts spanning from 2015 to 2100.
Facebook
TwitterThe Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), 2010-2100 consists of global spatial population projections at a resolution of one-eighth degree (7.5 arc-minutes) for urban, rural, and total population, consistent both quantitatively and qualitatively, with the SSPs at ten-year intervals for 2010-2100. Spatial demographic projections are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). This data set is produced based on a clear need for plausible alternative projections of spatial distribution of the population that can represent patterns of development consistent with the SSPs.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Aakash Shinde
Released under CC0: Public Domain
Facebook
TwitterThe Global One-Eighth Degree Population Base Year and Projection Grids Based on the Shared Socioeconomic Pathways, Revision 01, data set consists of global urban, rural, and total population data for the base year 2000, and population projections at ten-year intervals for 2010-2100 at a resolution of one-eighth degree (7.5 arc-minutes), consistent both quantitatively and qualitatively with the SSPs. Spatial demographic data are key inputs for the analysis of land use, energy use, and emissions, as well as for the assessment of climate change vulnerability, impacts, and adaptation. The SSPs are developed to support future climate and global change research and the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6). To provide global urban, rural, and total population base year and projection grids based on the Shared Socioeconomic Pathways (SSPs) data at a resolution of one-eighth degree (7.5 arc-minutes) for climate, socioeconomic, environmental, and other related research.
Facebook
TwitterThe Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 2 data set consists of country-level estimates of urban population, rural population, total population and land area country-wide and in LECZs for years 1990, 2000, 2010, and 2100. The LECZs were derived from Shuttle Radar Topography Mission (SRTM), 3 arc-second (~90m) data which were post processed by ISciences LLC to include only elevations less than 20m contiguous to coastlines; and to supplement SRTM data in northern and southern latitudes. The population and land area statistics presented herein are summarized at the low coastal elevations of less than or equal to 1m, 3m, 5m, 7m, 9m, 10m, 12m, and 20m. Additionally, estimates are provided for elevations greater than 20m, and nationally. The spatial coverage of this data set includes 202 of the 232 countries and statistical areas delineated in the Gridded Rural-Urban Mapping Project version 1 (GRUMPv1) data set. The 30 omitted areas were not included because they were landlocked, or otherwise lacked coastal features. This data set makes use of the population inputs of GRUMPv1 allocated at 3 arc-seconds to match the SRTM elevations, and at 30 arc-seconds resolution in order to reflect uncertainty levels in the product resulting from the interplay of input population data resolutions (based on census units) and the elevation data. Urban and rural areas are differentiated by the GRUMPv1 Urban Extents. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN). To provide estimates of urban and rural populations and land areas for the years 1990, 2000, and 2010; and projections to the year 2100 for 202 countries with contiguous coastal elevations in the following categories: less than or equal to 1m, 3m, 5m, 7m, 9m, 10m, 12m, or 20m; as well as national totals.
Facebook
TwitterWhereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.55 billion inhabitants on the continent at the beginning of 2025, the number of inhabitants is expected to reach 3.81 billion by 2100. In total, the global population is expected to reach nearly 10.18 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2024. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.