Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset provides comprehensive insights into U.S. residential house prices through the S&P Case-Shiller Home Price Index, which includes both the national index and indices for 20 metropolitan regions. The data is derived from the S&P Case-Shiller Index, a widely recognized and reliable measure of U.S. housing price movements. It is updated monthly and utilizes the "repeat sales method" to track the price changes of the same properties over time, making it an accurate reflection of housing appreciation.
The dataset includes: - S&P/Case-Shiller U.S. National Home Price Index: A composite index of single-family home prices across nine U.S. Census divisions. - Indices for 20 Metropolitan Regions: Regional indices that highlight housing price trends in major U.S. cities.
The index uses a "repeat sales" approach, which tracks properties that have been sold at least twice to capture changes in their value over time. This method minimizes biases from changes in housing stock or individual property characteristics. The index originated in the 1980s through the work of Karl E. Case and Robert J. Shiller, pioneers in developing the repeat sales technique. It remains one of the most trusted tools for measuring U.S. housing market trends.
The indices are used widely by policymakers, economists, and analysts to gauge housing market conditions and make informed decisions.
This dataset can be used for: - Housing Market Analysis: Track trends in national and metropolitan housing prices. - Econometric Modeling: Analyze the relationship between housing prices and macroeconomic factors. - Forecasting: Build models to predict future housing market movements.
Data sourced from: https://github.com/datasets/house-prices-us Original source: https://datahub.io/core/house-prices-us
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Hong Kong increased to 143.46 points in November 23 from 142.49 points in the previous week. This dataset provides - Hong Kong House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThrough reading this publication you will: • gain an understanding of how house prices are set in economics terms, how they are measured, and why the cost of housing matters for London’s economy and its residents • see whether incomes and earnings in London have kept pace with the costs of home ownership in London, and see how affordability may be affected by future changes in interest rates • find out about the drivers of demand for residential property in London, and how the supply of homes has responded to changing conditions
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains a comprehensive collection of indicators which dictate the housing prices in the United States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nahb Housing Market Index in the United States increased to 38 points in November from 37 points in October of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United States decreased to 435.40 points in September from 435.60 points in August of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterBy Zillow Data [source]
This unique dataset explores the trends in negative equity within US housing markets from 2011 to 2017, allowing users to uncover the various factors and determinants that affected the outcome in each market. With data provided on all home types such as single-family homes, condominiums, and co-ops, as well as special metrics such as cash buyers and affordability analyses, you will be able to gain a comprehensive understanding of how these forces have interacted over time. Using this data you can not only learn more about historical behavior but also make predictions for future trends in these impacts.
In addition to data collected by Zillow through their own internal resources, they have also partnered with TransUnion and other affiliate sources to give an even more precise look into what has been driving these changing dynamics across US housing markets. Such information includes negative equity metrics which allow us to track actual outstanding home-related debt amounts over time - a valuable resource when evaluating potential investments or relocations!
And of course with any dataset there are a few guiding principles that one should take note of before delving in – this is especially true when it comes down to copyright issues or prohibited uses; though all data can be freely obtained here for public use - clear attribution of such information is legally required at all times (as stated on Zillow’s very own Terms & Conditions page). Furthermore additional resources such as Mortgage Rate Series or Jumbo Mortgages are also available through Zillow; again making sure that appropriate disclaimers are read before utilizing them.
Regardless this little treasure trove of knowledge is waiting at your fingertips – whether you’re trying your luck investing wise or just looking for an area where renting rates are equitable compared real estate values; it provides everything you need understand regional housing market fluctuations over the last half decade!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides historical and current trends in negative equity (the amount a mortgage is underwater) across the United States. It contains negative equity data from Zillow, one of the leading real estate data providers. The dataset covers all housing types (including single family, condominiums and co-ops). Additionally, it includes cash buyers share, mortgage affordability index, rental affordability index and other relative measures of affordability for US metro areas. This guide will help you understand how to use this data set for your own analysis.
Overview of Covered Data:
The dataset contains time series data that shows your current trend in negative equity rate as well as some associated metrics across different scales such as region, county, city and MSA level. To access this information you will need to take following columns into consideration while using this data set:
- RegionName: Name of the region (e.g., city/county/MSA)
- SizeRank: Ranking of the region by size
- RegionType: Type of region (e.g., city/county/state)
- StateName: Name of the state
- MSA: Metropolitan Statistical Area FORMAT_4C A4 RINFOX_ RTI Information Exchange File Format [multi value 9] FORMAT_3E A3 FITS Flexible Image Transport System VERSION 4C 3E 1 Language Indicator 0 0 1 1 DONTCOPY 536880031 FILEEXTN 3 Stream Type buffer 'USTD' file version 2 HNEED 8 FILETYPE 'UDIO' creation date 05 FEB 1985 Source FMT0025 APPLICAT TRAINFORM File Organization Spooled Files DF140520 Header Block Length in Words 682 with Header Offset 636 / ULQUACK INTLCHAN * ETBFMT(V7R2),D*RECORD ACCOUNT CRFTIME FT240187 batch process status continuous Availability Continuous Version number V03C02 LOADAT AT04
- Analyzing which markets have been disproportionately affected by the housing crisis and utilizing this information to inform investment strategies and...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was generated for analyzing the economic impacts of subway networks on housing prices in metropolitan areas. The provision of transit networks and accompanying improvement in accessibility induce various impacts and we focused on the economic impacts realized through housing prices. As a proxy of housing price, we consider the price of condominiums, the dominant housing type in South Korea. Although our focus is transit accessibility and housing prices, the presented dataset is applicable to other studies. In particular, it provides a wide range of variables closely related to housing price, including housing properties, local amenities, local demographic characteristics, and control variables for the seasonality. Many of these variables were scientifically generated by our research team. Various distance variables were constructed in a geographic information system environment based on public data and they are useful not only for exploring environmental impacts on housing prices, but also for other statistical analyses in regard to real estate and social science research. The four metropolitan areas covered by the data—Busan, Daegu, Daejeon, and Gwangju—are independent of the transit systems of Greater Seoul, providing accurate information on the metropolitan structure separate from the capital city.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replication data and Phyton programs for "Comparing automated valuation models for real estate assessment in the Santiago Metropolitan Region: A study on machine learning algorithms and hedonic pricing with spatial adjustments", PLOS ONE.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in China remained unchanged at -2.20 percent in October. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterZillow's Economic Research Team collects, cleans and publishes housing and economic data from a variety of public and proprietary sources. Public property record data filed with local municipalities -- including deeds, property facts, parcel information and transactional histories -- forms the backbone of our data products, and is fleshed out with proprietary data derived from property listings and user behavior on Zillow.
The large majority of Zillow's aggregated housing market and economic data is made available for free download at zillow.com/data.
Variable Availability:
Zillow Home Value Index (ZHVI): A smoothed seasonally adjusted measure of the median estimated home value across a given region and housing type. A dollar denominated alternative to repeat-sales indices. Find a more detailed methodology here: http://www.zillow.com/research/zhvi-methodology-6032/
Zillow Rent Index (ZRI): A smoothed seasonally adjusted measure of the median estimated market rate rent across a given region and housing type. A dollar denominated alternative to repeat-rent indices. Find a more detailed methodology here: http://www.zillow.com/research/zillow-rent-index-methodology-2393/
For-Sale Listing/Inventory Metrics: Zillow provides many variables capturing current and historical for-sale listings availability, generally from 2012 to current. These variables include median list prices and inventory counts, both by various property types. Variables capturing for-sale market competitiveness including share of listings with a price cut, median price cut size, age of inventory, and the days a listing spend on Zillow before the sale is final.
Home Sales Metrics: Zillow provides data on sold homes including median sale price by various housing types, sale counts (methodology here: http://www.zillow.com/research/home-sales-methodology-7733/), and a normalized view of sale volume referred to as turnover. The prevalence of foreclosures is also provided as ratio of the housing stock and the share of all sales in which the home was previously foreclosed upon.
For-Rent Listing Metrics: Zillow provides median rents prices and median rent price per square foot by property type and bedroom count.
Housing type definitions:
All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
Condo/Co-op: Condominium and co-operative homes.
Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.
Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.
Tiers: By metro, we determine price tier cutoffs that divide the all homes housing stock into thirds using the full distribution of estimated home values. We then estimate real estate metrics within the property sets, Bottom, Middle, and Top, defined by these cutoffs. When reported at the national level, all Bottom Tier homes defined at the metro level are pooled together to form the national bottom tier. The same holds for Middle and Top Tier homes.
Regional Availability:
Zillow metrics are reported for common US geographies including Nation, State, Metro (2013 Census Defined CBSAs), County, City, ZIP code, and Neighborhood.
We provide a crosswalk between colloquial Zillow region names and federally defined region names and linking variables such as County FIPS codes and CBSA codes. Cities and Neighborhoods do not match standard jurisdictional boundaries. Zillow city boundaries reflect mailing address conventions and so are often visually similar to collections of ZIP codes. Zillow neighborhood boundaries can be found here.
Suppression Rules: To ensure reliability of reported values the Zillow Economic Research team applies suppression rules triggered by low sample sizes and excessive volatility. These rules are customized to the metric and region type and explain most missingness found in the provided datasets.
Additional Data Products
The following data products and more are available for free download exclusively at [Zillow.com/Data][1]:
The mission of the Zillow Economic Research Team is to be the most open, authoritative source for timely and accurate housing data and unbiased insight. We...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains structural attributes, locational information and prices for more than 139 thousand apartments in the city of Tehran (Iran). The data was collected from the largest national real estate website using a web crawler and contains submission date, exact location, neighborhood name, base area, floor level, age of building, price per square meter, and total price for the entries of the past four years.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the data for the paper "Is There a Stationary Home Price-Rent Relationship in US Housing Markets?".
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average House Prices in Canada increased to 688800 CAD in October from 687600 CAD in September of 2025. This dataset includes a chart with historical data for Canada Average House Prices.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Italy increased to 116.40 points in the second quarter of 2025 from 113.30 points in the first quarter of 2025. This dataset provides - Italy House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United Kingdom increased to 517.10 points in October from 514.20 points in September of 2025. This dataset provides - United Kingdom House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set represents real estate market announcements monitoring data in Latvia in 2022. The data was collected from online ads site ss.com. The database contains 180,5 thousand ads and consists of 24 groups of data (type of deal, price, characteristics and address of real estate, etc.). The data reflects the dynamics of price changes by months (at the beginning of the month) in 2022. Monitoring continued in 2022 was started in 2018. 2018 year dataset is available in Skribans, Dr.oec. V. (Riga Technical University) (2019): Latvian Real Estate Announcements Monitoring in 2018. DANS. https://doi.org/10.17026/dans-2z3-fx28 ; 2019 year data is available in Skribans, Valerijs (2019), “Latvian Real Estate Announcements Monitoring in 2019”, Mendeley Data, V1, doi: 10.17632/m7bzjsx557.1 ; 2020 year data is available in Skribans, Valerijs (2020), “Latvian Real Estate Announcements Monitoring in 2020”, Mendeley Data, V1, doi: 10.17632/wrnvjfszc9.1 ; 2021 year (first Quoter) data is available in Skribans, Valerijs; Cevers, Aldis; Rudzitis, Normunds; Gulbis, Aivars; Krastins, Aivars (2021), “Latvian Real Estate Announcements Monitoring in 2021 Q1”, Mendeley Data, V1, doi: 10.17632/cvr23jgjkz.1
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.