Download high-quality, up-to-date Ecuador shapefile boundaries (SHP, projection system SRID 4326). Our Ecuador Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
No hay ninguna descripción para este conjunto de datos.
Spatial coverage index compiled by East View Geospatial of set "Ecuador 1:1,000,000 Mineral Map". Source data from SNGM (publisher). Type: Geoscientific - Geology. Scale: 1:1,000,000. Region: South America.
Spatial coverage index compiled by East View Geospatial of set "Ecuador 1:25,000 Scale Topographic Maps". Source data from IGME (publisher). Type: Topographic. Scale: 1:25,000. Region: South America.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Datasets supporting the paper 'Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador'
Contact: C. Scott Watson. c.s.watson@leeds.ac.uk
DRR_greenspace DRR_greenspace_polygon.shp - classified potential DRR greenspace (minimum 100 m2) DRR_greenspace_zone_points.shp - classified potential DRR greenspace aggregated to zones DRR_greenspace_zone_polygons_top10.shp - Top 10 maximum capacitated analysis of classified potential DRR greenspace aggregated to zones.
Land_cover rf_1986_mode_clipped.tif - 1986 land cover classification rf_2020_mode_clipped.tif - 2020 land cover classification landcover_classes.PNG - land cover classes accuracy_assessment_points_1986 - 1986 land cover accuracy assessment points accuracy_assessment_points_2020 - 2020 land cover accuracy assessment points modified_urban_growth_scenario.shp - hazard-modified urban growth scenario
We present a flora and fauna dataset for the Mira-Mataje binational basins. This is an area shared between southwestern Colombia and northwestern Ecuador, where both the Chocó and Tropical Andes biodiversity hotspots converge. Information from 120 sources was systematized in the Darwin Core Archive (DwC-A) standard and geospatial vector data format for geographic information systems (GIS) (shapefiles). Sources included natural history museums, published literature, and citizen science repositories across 18 countries. The resulting database has 33,460 records from 5,281 species, of which 1,083 are endemic and 680 threatened. The diversity represented in the dataset is equivalent to 10\% of the total plant species and 26\% of the total terrestrial vertebrate species in the hotspots. It corresponds to 0.07\% of their total area. The dataset can be used to estimate and compare biodiversity patterns with environmental parameters and provide value to ecosystems, ecoregions, and protected areas. The dataset is a baseline for future assessments of biodiversity in the face of environmental degradation, climate change, and accelerated extinction processes. The data has been formally presented in the manuscript entitled "The Tropical Andes Biodiversity Hotspot: A Comprehensive Dataset for the Mira-Mataje Binational Basins" in the journal "Scientific Data". To maintain DOI integrity, this version will not change after publication of the manuscript and therefore we cannot provide further references on volume, issue, and DOI of manuscript publication. - Data format 1: The .rds file extension saves a single object to be read in R and provides better compression, serialization, and integration within the R environment, than simple .csv files. The description of file names is in the original manuscript. -- m_m_flora_2021_voucher_ecuador.rds -- m_m_flora_2021_observation_ecuador.rds -- m_m_flora_2021_total_ecuador.rds -- m_m_fauna_2021_ecuador.rds - Data format 2: The .csv file has been encoded in UTF-8, and is an ASCII file with text separated by commas. The description of file names is in the original manuscript. -- m_m_flora_fauna_2021_all.zip. This file includes all biodiversity datasets. -- m_m_flora_2021_voucher_ecuador.csv -- m_m_flora_2021_observation_ecuador.csv -- m_m_flora_2021_total_ecuador.csv -- m_m_fauna_2021_ecuador.csv - Data format 3: We consolidated a shapefile for the basin containing layers for vegetation ecosystems and the total number of occurrences, species, and endemic and threatened species for each ecosystem. -- biodiversity_measures_mira_mataje.zip. This file includes the .shp file and accessory geomatic files. - A set of 3D shaded-relief map representations of the data in the shapefile can be found at https://doi.org/10.6084/m9.figshare.23499180.v4 Three taxonomic data tables were used in our technical validation of the presented dataset. These three files are: 1) the_catalog_of_life.tsv (Source: Bánki, O. et al. Catalogue of life checklist (version 2024-03-26). https://doi.org/10.48580/dfz8d (2024)) 2) world_checklist_of_vascular_plants_names.csv (we are also including ancillary tables "world_checklist_of_vascular_plants_distribution.csv", and "README_world_checklist_of_vascular_plants_.xlsx") (Source: Govaerts, R., Lughadha, E. N., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants is a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215, 10.1038/s41597-021-00997-6 (2021).) 3) world_flora_online.csv (Source: The World Flora Online Consortium et al. World flora online plant list December 2023, 10.5281/zenodo.10425161 (2023).)
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
OpenStreetMap exports for use in GIS applications.
This theme includes all OpenStreetMap features in this area matching:
amenity IS NOT NULL OR man_made IS NOT NULL OR shop IS NOT NULL OR tourism IS NOT NULL
Features may have these attributes:
This dataset is one of many "/dataset?tags=openstreetmap">OpenStreetMap exports on HDX. See the Humanitarian OpenStreetMap Team website for more information.
Spatial coverage index compiled by East View Geospatial of set "Ecuador 1:50,000 Scale Topographic Maps". Source data from IGME (publisher). Type: Topographic. Scale: 1:50,000. Region: South America.
Las áreas protegidas (AP) que forman parte del Sistema Nacional de Áreas Protegidas (SNAP) son espacios naturales declarados bajo protección del Estado, que tienen el propósito de salvaguardar y conservar en su estado natural la flora y fauna silvestre, los recursos genéticos, los ecosistemas naturales, las cuencas hidrográficas.Sumatoria de superficie generada a través de información geoespacial del Sistema Nacional de Áreas Protegidas (SNAP) que contempla los subsistemas: estatal (parques nacionales, reservas biológicas, ecológicas, geobotánicas, de producción faunística, marinas, refugios de vida silvestre y áreas de recreación), autónomo descentralizado, comunitario y privado. Se emplea información geográfica con la superficie a escala 1:250.000, disponible a último periodo de actualización.NOTA:A nivel nacional Ecuador según fuente oficial cuenta con 74 áreas protegidas. Esta capa fue modificada, agregando cuatro áreas más reconocidas internacionalmente que no necesariamente se encuentran inscritas legalmente (como lo menciona Protected Planet, es importante aclarar que esta base de datos de áreas protegidas presenta datos diferentes, ya que al hacer la descarga el equipo del Portal30x30 evidencio solapes y duplicidad en áreas, por lo tanto se toma como referencia la capa oficial de SNAP) pero que si se aspira tener objetivos de conservación por sus características intrínsecas. Cabe aclarar que estas áreas al no estar inscritas formalmente no se toman en cuenta en el cálculo de los índices de áreas protegidas terrestres y marinas para Ecuador en el Portal30x30, pero si se relacionan con el ánimo de darles visibilidad y monitoreo.Las cuatro áreas mencionadas son:1. La Tembladera2. Complejo de Humedales Cuyabeno Lagartococha Yasuní3. Territorio del pueblo Shuar Arutam4. Pueblo Originario Kichwa de SarayakuVisualizador de datos oficial EcuadorData Source:SNAP, 2023. Laste acceded mayo 2023
Isolíneas (líneas que unen puntos de igual precipitación ) que determinan el régimen pluviométrico del lugar o zona, estimándose como lugar seco o húmedo o estación húmeda o de humedad constante. Corresponde a los promedios anuales de precipitación de una serie de 25 años.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Datasets supporting the publication:
Evaluating night-time light sources and correlation with socio-economic development using high-resolution multi-spectral Jilin-1 satellite imagery of Quito, Ecuador.
International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2023.2205983
C. Scott Watsona*, John R. Elliotta, Marco Córdovab, Jonathan Menoscalb, Santiago Bonilla-Bedoyac
aCOMET, School of Earth and Environment, University of Leeds, LS2 9JT, UK
bFacultad Latinoamericana de Ciencias Sociales, FLACSO, Quito, Ecuador
cResearch Center for the Territory and Sustainable Habitat, Universidad Tecnológica Indoamérica,Machala y Sabanilla, 170301, Quito, Ecuador
-Please refer to the publication for details on the production of each dataset. -Please cite the publication and this dataset repository when using the data.
Data:
File
Description
J1_mosaic_max.tif
Mosaicked Jilin-1 multi-spectral night-time image of Quito, Ecuador. Acquisition: 8th July 2021 at ~10:30 UTC (05:30 local time)
corine_landcover_S2_20210705T153621_20210705T154215_T17MQV.tif
Land cover classification applied to a Sentinel-2 image (5th July 2021)
corine_landcover_symbology_qgis.txt
Land cover classification symbology for QGIS
light_type_classification.tif
Light type classification: class 1 = LED, class 10 = HPS.
classified_light_locations.shp
Classified light source (point) locations
Attribution-NoDerivs 3.0 (CC BY-ND 3.0)https://creativecommons.org/licenses/by-nd/3.0/
License information was derived automatically
Statistics illustrates market overview of tailors' dummies and other lay figures; automata and other animated displays used for shop window dressing in Ecuador from 2007 to 2024.
Mapa de la distribución de manglar en el archipiélago. Conformado por capas de: FCD 2015, EcoCiencia 2005, e IGM con la capa base de las islas.
Identifican zonas de temperatura, generadas a partir de las isotermas, que son líneas que unen puntos de igual valor, dada en grados centígrados. Corresponde a los promedios anuales de temperatura de una serie de 25 años.
Mineral resource occurrence data covering the world, most thoroughly within the U.S. This database contains the records previously provided in the Mineral Resource Data System (MRDS) of USGS and the Mineral Availability System/Mineral Industry Locator System (MAS/MILS) originated in the U.S. Bureau of Mines, which is now part of USGS. The MRDS is a large and complex relational database developed over several decades by hundreds of researchers and reporters. While database records describe mineral resources worldwide, the compilation of information was intended to cover the United States completely, and its coverage of resources in other countries is incomplete. The content of MRDS records was drawn from reports previously published or made available to USGS researchers. Some of those original source materials are no longer available. The information contained in MRDS was intended to reflect the reports used as sources and is current only as of the date of those source reports. Consequently MRDS does not reflect up-to-date changes to the operating status of mines, ownership, land status, production figures and estimates of reserves and resources, or the nature, size, and extent of workings. Information on the geological characteristics of the mineral resource are likely to remain correct, but aspects involving human activity are likely to be out of date.
Spatial coverage index compiled by East View Geospatial of set "Ecuador Provinces Topographic Maps". Source data from IGME (publisher). Type: Topographic. Scale: Varies. Region: South America.
Bosques protectores dentro del área de estudio (MAAE, 2017) con información de la presencia minera dentro de ellos.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
El mapa comprende el monitoreo de los cultivos de Arroz, Maíz amarillo duro y Soya correspondiente al al segundo período de siembra efectuado durante el año, mediante el uso, análisis e interpretación de imágenes satelitales de mediana y alta resolución.
Fuente: Ministerio de Agricultura del Ecuador MAG – CGINA – DGGA
Data publication: 2023-11-22
Supplemental Information:
La Unidad Mínima Cartografiable (UMC) establecida es de 0.5 hectáreas. Superficie que se ha establecido debido a la representatividad del conjunto de agricultores que cuentan con cultivos menores a 1 hectárea y contribuyeron a la productividad de Arroz, Maíz amarillo duro y Soya en el segundo período de siembra en los años 2014-2023.
Contact points:
Data lineage:
2014:
2015:
2016:
2017:
2018
2019: La presencia de nubes en las imágenes satelitales de algunos sectores dificultó la interpretación de información en ciertos cantones de las provincias de El Oro, Guayas y Los Ríos.
2020:
2021
2022: La presencia de nubes en las imágenes satelitales de algunos sectores dificultó la interpretación de información en los cantones Buena Fe y Valencia de la provincia de Los Ríos y en el cantón El Carmen de la provincia de Manabí.
Resource constraints:
Licencia CC BY-NC-SA: Reconocimiento-NoComercial-CompartirIgual https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
Esta licencia permite a otros entremezclar, ajustar y construir a partir de su obra con fines no comerciales, siempre y cuando le reconozcan la autoría y sus nuevas creaciones estén bajo una licencia con los mismos términos.
Para información detallada consulte el siguiente link: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Online resources:
Datos para descargar: Comprimido de la Base de datos geográfica catalogada en formato (.shp)
Capa tematica vestorial formato shape (*.shp) de Autorizaciones de Uso y Aprovechamiento de Agua de la Demarcacion Hidrográfica Santiago, generada a partir de la información del Banco Nacional de Autorizaciones entregada por los CAC.
Spatial coverage index compiled by East View Geospatial of set "Ecuador Nautical Charts (All Scales)". Source data from IOA (publisher). Type: Nautical. Scale: Varies. Region: South America.
Download high-quality, up-to-date Ecuador shapefile boundaries (SHP, projection system SRID 4326). Our Ecuador Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.