Tailor made data to apply the machine learning models on the dataset. Where the newcomers can easily perform their EDA.
The data consists of all the features of the four wheelers available in the market in 1985. We need to predict the **price of the car ** using Linear Regression or PCA or SVM-R etc.,
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F23516597%2F11309e6c4df1437ed2aa6a8fb121daa5%2FScreenshot%202025-04-10%20at%2004.17.42.png?generation=1744233480336962&alt=media" alt="">
https://www.kaggle.com/code/idmitri/exploratory-data-analysis
https://www.kaggle.com/code/idmitri/rul-prediction-modeling
Силовые трансформаторы на АЭС могут эксплуатироваться дольше расчетного срока службы (25 лет), что требует усиленного мониторинга их состояния для обеспечения надежности и безопасности эксплуатации.
Для оценки состояния трансформаторов применяется хроматографический анализ растворенных газов, который позволяет выявлять дефекты по концентрациям газов в масле и прогнозировать остаточный срок службы трансформатора (RUL). Традиционные системы мониторинга ограничиваются фиксированными пороговыми значениями концентраций, снижая точность диагностики и автоматизацию. Методы машинного обучения позволяют выявлять скрытые зависимости и повышать точность прогнозирования. Подробнее: https://habr.com/ru/articles/743682/
В данном проекте проводится глубокий анализ данных (EDA) с созданием 12 групп признаков:
- gases (концентрации газов)
- trend (трендовые компоненты)
- seasonal (сезонные компоненты)
- resid (остаточные компоненты)
- quantiles (квантили распределений)
- volatility (волатильность концентраций)
- range (размах значений)
- coefficient of variation (коэффициент вариации)
- standard deviation (стандартное отклонение)
- skewness (асимметрия распределения)
- kurtosis (эксцесс распределения)
- category (категориальные признаки неисправностей)
Использование статистических и декомпозиционных признаков позволило достичь совпадения точности силуэта распределения RUL с автоматической обработкой выбросов, что ранее требовало ручной корректировки.
Для моделирования использованы алгоритмы машинного обучения (LightGBM, CatBoost, Extra Trees) и их ансамбль. Лучшая точность достигнута моделью LightGBM с оптимизацией гиперпараметров с помощью Optuna: MAE = 61.85, RMSE = 88.21, R2 = 0.8634.
Код для проведения разведочного анализа данных (EDA) был разработан и протестирован локально в VSC Jupyter Notebook с использованием окружения Python 3.10.16. И на платформе Kaggle большинство графиков отображается корректно. Но некоторые сложные и комплексные визуализации (например, многомерные графики с цветовой шкалой) не адаптированы из-за ограничений среды. Несмотря на попытки оптимизировать код без существенных изменений, добиться полной совместимости не удалось. Основная проблема заключалась в конфликте версий библиотек и значительном снижении производительности — расчет занимал примерно в 10 раз больше времени по сравнению с локальной машиной MacBook M3 Pro. На Kaggle либо корректно выполнялись операции с использованием PyCaret, либо работали модели машинного обучения, но не обе части одновременно.
Предлагается гибридный вариант работы:
- Публикация и вывод метрик на Kaggle для визуализации результатов.
- Локальный расчет и обучение моделей с использованием предварительно настроенного окружения Python 3.10.16. Для воспроизведения экспериментов подготовлена папка Codes
с кодами VSC EDA
, RUL
и файлом libraries_for_modeling
, содержащим список версий всех используемых библиотек.
Готов ответить в комментариях на все вопросы по настройке и запуску кода. И буду признателен за советы по предотвращению подобных проблем.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data_Analysis.ipynb
: A Jupyter Notebook containing the code for the Exploratory Data Analysis (EDA) presented in the thesis. Running this notebook reproduces the plots in the eda_plots/
directory.Dataset_Extension.ipynb
: A Jupyter Notebook used for the data enrichment process. It takes the raw `Inference_data.csv
` and produces the Inference_data_Extended.csv
by adding detailed hardware specifications, cost estimates, and derived energy metrics.Optimization_Model.ipynb
: The main Jupyter Notebook for the core contribution of this thesis. It contains the code to perform the 5-fold cross-validation, train the final predictive models, generate the Pareto-optimal recommendations, and create the final result figures.Inference_data.csv
: The raw, unprocessed data collected from the official MLPerf Inference v4.0 results.Inference_data_Extended.csv
: The final, enriched dataset used for all analysis and modeling. This is the output of the Dataset_Extension.ipynb
notebook.eda_log.txt
: A text log file containing summary statistics generated during the exploratory data analysis.requirements.txt
: A list of all necessary Python libraries and their versions required to run the code in this repository.eda_plots/
: A directory containing all plots (correlation matrices, scatter plots, box plots) generated by the EDA notebook.optimization_models_final/
: A directory where the trained and saved final model files (.joblib
) are stored after running the optimization notebook.pareto_validation_plot_fold_0.png
: The validation plot comparing the true vs. predicted Pareto fronts, as presented in the thesis.shap_waterfall_final_model.png
: The SHAP plot used for the model interpretability analysis, as presented in the thesis.
bash
git clone
cd
bash
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
bash
pip install -r requirements.txt
Inference_data_Extended.csv
`) is already provided. However, if you wish to reproduce the enrichment process from scratch, you can run the **`Dataset_Extension.ipynb
`** notebook. It will take `Inference_data.csv` as input and generate the extended version.eda_plots/
` directory. To regenerate them, run the **`Data_Analysis.ipynb
`** notebook. This will overwrite the existing plots and the `eda_log.txt` file.Optimization_Model.ipynb
notebook will execute the entire pipeline described in the paper:optimization_models_final/
directory.pareto_validation_plot_fold_0.png
and shap_waterfall_final_model.png
.Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 dataset in Japan’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/lisphilar/covid19-dataset-in-japan on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This is a COVID-19 dataset in Japan. This does not include the cases in Diamond Princess cruise ship (Yokohama city, Kanagawa prefecture) and Costa Atlantica cruise ship (Nagasaki city, Nagasaki prefecture). - Total number of cases in Japan - The number of vaccinated people (New/experimental) - The number of cases at prefecture level - Metadata of each prefecture
Note: Lisphilar (author) uploads the same files to https://github.com/lisphilar/covid19-sir/tree/master/data
This dataset can be retrieved with CovsirPhy (Python library).
pip install covsirphy --upgrade
import covsirphy as cs
data_loader = cs.DataLoader()
japan_data = data_loader.japan()
# The number of cases (Total/each province)
clean_df = japan_data.cleaned()
# Metadata
meta_df = japan_data.meta()
Please refer to CovsirPhy Documentation: Japan-specific dataset.
Note: Before analysing the data, please refer to Kaggle notebook: EDA of Japan dataset and COVID-19: Government/JHU data in Japan. The detailed explanation of the build process is discussed in Steps to build the dataset in Japan. If you find errors or have any questions, feel free to create a discussion topic.
covid_jpn_total.csv
Cumulative number of cases:
- PCR-tested / PCR-tested and positive
- with symptoms (to 08May2020) / without symptoms (to 08May2020) / unknown (to 08May2020)
- discharged
- fatal
The number of cases: - requiring hospitalization (from 09May2020) - hospitalized with mild symptoms (to 08May2020) / severe symptoms / unknown (to 08May2020) - requiring hospitalization, but waiting in hotels or at home (to 08May2020)
In primary source, some variables were removed on 09May2020. Values are NA in this dataset from 09May2020.
Manually collected the data from Ministry of Health, Labour and Welfare HP:
厚生労働省 HP (in Japanese)
Ministry of Health, Labour and Welfare HP (in English)
The number of vaccinated people:
- Vaccinated_1st
: the number of vaccinated persons for the first time on the date
- Vaccinated_2nd
: the number of vaccinated persons with the second dose on the date
- Vaccinated_3rd
: the number of vaccinated persons with the third dose on the date
Data sources for vaccination: - To 09Apr2021: 厚生労働省 HP 新型コロナワクチンの接種実績(in Japanese) - 首相官邸 新型コロナワクチンについて - From 10APr2021: Twitter: 首相官邸(新型コロナワクチン情報)
covid_jpn_prefecture.csv
Cumulative number of cases:
- PCR-tested / PCR-tested and positive
- discharged
- fatal
The number of cases: - requiring hospitalization (from 09May2020) - hospitalized with severe symptoms (from 09May2020)
Using pdf-excel converter, manually collected the data from Ministry of Health, Labour and Welfare HP:
厚生労働省 HP (in Japanese)
Ministry of Health, Labour and Welfare HP (in English)
Note:
covid_jpn_prefecture.groupby("Date").sum()
does not match covid_jpn_total
.
When you analyse total data in Japan, please use covid_jpn_total
data.
covid_jpn_metadata.csv
- Population (Total, Male, Female): 厚生労働省 厚生統計要覧(2017年度)第1-5表
- Area (Total, Habitable): Wikipedia 都道府県の面積一覧 (2015)
Hospital_bed: With the primary data of 厚生労働省 感染症指定医療機関の指定状況(平成31年4月1日現在), 厚生労働省 第二種感染症指定医療機関の指定状況(平成31年4月1日現在), 厚生労働省 医療施設動態調査(令和2年1月末概数), 厚生労働省 感染症指定医療機関について and secondary data of COVID-19 Japan 都道府県別 感染症病床数,
Clinic_bed: With the primary data of 医療施設動態調査(令和2年1月末概数) ,
Location: Data is from LinkData 都道府県庁所在地 (Public Domain) (secondary data).
Admin
To create this dataset, edited and transformed data of the following sites was used.
厚生労働省 Ministry of Health, Labour and Welfare, Japan:
厚生労働省 HP (in Japanese)
Ministry of Health, Labour and Welfare HP (in English)
厚生労働省 HP 利用規約・リンク・著作権等 CC BY 4.0 (in Japanese)
国土交通省 Ministry of Land, Infrastructure, Transport and Tourism, Japan: 国土交通省 HP (in Japanese) 国土交通省 HP (in English) 国土交通省 HP 利用規約・リンク・著作権等 CC BY 4.0 (in Japanese)
Code for Japan / COVID-19 Japan: Code for Japan COVID-19 Japan Dashboard (CC BY 4.0) COVID-19 Japan 都道府県別 感染症病床数 (CC BY)
Wikipedia: Wikipedia
LinkData: LinkData (Public Domain)
Kindly cite this dataset under CC BY-4.0 license as follows. - Hirokazu Takaya (2020-2022), COVID-19 dataset in Japan, GitHub repository, https://github.com/lisphilar/covid19-sir/data/japan, or - Hirokazu Takaya (2020-2022), COVID-19 dataset in Japan, Kaggle Dataset, https://www.kaggle.com/lisphilar/covid19-dataset-in-japan
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
To the electrical engineering community
This dataset contains Q&A prompts about electrical engineering, Kicad's EDA software features and scripting console Python codes.
Authors
STEM.AI: stem.ai.mtl@gmail.comWilliam Harbec
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Olympics Data Analysis project explores historical Olympic data using Exploratory Data Analysis (EDA) techniques. By leveraging Python libraries such as pandas, seaborn, and matplotlib, the project uncovers patterns in medal distribution, athlete demographics, and country-wise performance.
Key findings reveal that most medalists are aged between 20-30 years, with USA, China, and Russia leading in total medals. Over time, female participation has increased significantly, reflecting improved gender equality in sports. Additionally, athlete characteristics like height and weight play a crucial role in certain sports, such as basketball (favoring taller players) and gymnastics (favoring younger athletes).
The project includes interactive visualizations such as heatmaps, medal trends, and gender-wise participation charts to provide a comprehensive understanding of Olympic history and trends. The insights can help sports analysts, researchers, and enthusiasts better understand performance patterns in the Olympics.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Description:
This dataset provides historical stock price data for selected ticker symbols ['AAPL', 'MSFT', 'JPM', 'GS', 'AMZN', 'PG', 'KO', 'JNJ', 'XOM', 'CAT'] from January 1, 2014, to December 31, 2023. It contains the daily opening, highest, lowest, closing, adjusted closing prices, and trading volume for each trading day. These tickers represent a diverse range of sectors to allow comprehensive financial analysis.
Purpose and Use Case:
This dataset is ideal for financial analysis, market trend assessments, and investment decision-making. Analysts and researchers can use this dataset to: * Analyze price and market trends. * Evaluate volatility by analyzing price fluctuations and trading volume. * Use historical price movements to forecast and predict future trends. * Assess investment opportunities and portfolio performance.
Acknowledgments:
Data was collected using Python and Yahoo Finance. This dataset supports visualization, exploratory data analysis (EDA), and in-depth analysis to develop a predictive model for forecasting stock prices, aiming to gain insights, identify patterns, and improve prediction accuracy.
Potential Research Questions and Inspiration:
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
🚀**# BCG Data Science Job Simulation | Forage** This notebook focuses on feature engineering techniques to enhance a dataset for churn prediction modeling. As part of the BCG Data Science Job Simulation, I transformed raw customer data into valuable features to improve predictive performance.
📊 What’s Inside? ✅ Data Cleaning: Removing irrelevant columns to reduce noise ✅ Date-Based Feature Extraction: Converting raw dates into useful insights like activation year, contract length, and renewal month ✅ New Predictive Features:
consumption_trend → Measures if a customer’s last-month usage is increasing or decreasing total_gas_and_elec → Aggregates total energy consumption ✅ Final Processed Dataset: Ready for churn prediction modeling
📂Dataset Used: 📌 clean_data_after_eda.csv → Original dataset after Exploratory Data Analysis (EDA) 📌 clean_data_with_new_features.csv → Final dataset after feature engineering
🛠 Technologies Used: 🔹 Python (Pandas, NumPy) 🔹 Data Preprocessing & Feature Engineering
🌟 Why Feature Engineering? Feature engineering is one of the most critical steps in machine learning. Well-engineered features improve model accuracy and uncover deeper insights into customer behavior.
🚀 This notebook is a great reference for anyone learning data preprocessing, feature selection, and predictive modeling in Data Science!
📩 Connect with Me: 🔗 GitHub Repo: https://github.com/Pavitr-Swain/BCG-Data-Science-Job-Simulation 💼 LinkedIn: https://www.linkedin.com/in/pavitr-kumar-swain-ab708b227/
🔍 Let’s explore churn prediction insights together! 🎯
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains data obtained from Goodreads, a popular website for book lovers, to gain insights into the best books of the 21st century. The data was scraped from the Best Books of the 21st Century list on Goodreads using the Beautiful Soup and Requests libraries in Python. After obtaining the data, cleaning and exploratory data analysis (EDA) were performed using Pandas, Plotly, Seaborn, and Matplotlib.
The dataset contains top books of the 21st century, spanning from the 2000s to the present day. The data is scraped from a popular book website, Goodreads. Some notable books in the dataset include the Harry Potter series, A Thousand Splendid Suns, The Kite Runner, and The Fault in Our Stars.
The dataset consists of a total of 84,033 books and comprises 15 columns.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Tailor made data to apply the machine learning models on the dataset. Where the newcomers can easily perform their EDA.
The data consists of all the features of the four wheelers available in the market in 1985. We need to predict the **price of the car ** using Linear Regression or PCA or SVM-R etc.,