Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F23516597%2F11309e6c4df1437ed2aa6a8fb121daa5%2FScreenshot%202025-04-10%20at%2004.17.42.png?generation=1744233480336962&alt=media" alt="">
https://www.kaggle.com/code/idmitri/exploratory-data-analysis
https://www.kaggle.com/code/idmitri/rul-prediction-modeling
Силовые трансформаторы на АЭС могут эксплуатироваться дольше расчетного срока службы (25 лет), что требует усиленного мониторинга их состояния для обеспечения надежности и безопасности эксплуатации.
Для оценки состояния трансформаторов применяется хроматографический анализ растворенных газов, который позволяет выявлять дефекты по концентрациям газов в масле и прогнозировать остаточный срок службы трансформатора (RUL). Традиционные системы мониторинга ограничиваются фиксированными пороговыми значениями концентраций, снижая точность диагностики и автоматизацию. Методы машинного обучения позволяют выявлять скрытые зависимости и повышать точность прогнозирования. Подробнее: https://habr.com/ru/articles/743682/
В данном проекте проводится глубокий анализ данных (EDA) с созданием 12 групп признаков:
- gases (концентрации газов)
- trend (трендовые компоненты)
- seasonal (сезонные компоненты)
- resid (остаточные компоненты)
- quantiles (квантили распределений)
- volatility (волатильность концентраций)
- range (размах значений)
- coefficient of variation (коэффициент вариации)
- standard deviation (стандартное отклонение)
- skewness (асимметрия распределения)
- kurtosis (эксцесс распределения)
- category (категориальные признаки неисправностей)
Использование статистических и декомпозиционных признаков позволило достичь совпадения точности силуэта распределения RUL с автоматической обработкой выбросов, что ранее требовало ручной корректировки.
Для моделирования использованы алгоритмы машинного обучения (LightGBM, CatBoost, Extra Trees) и их ансамбль. Лучшая точность достигнута моделью LightGBM с оптимизацией гиперпараметров с помощью Optuna: MAE = 61.85, RMSE = 88.21, R2 = 0.8634.
Код для проведения разведочного анализа данных (EDA) был разработан и протестирован локально в VSC Jupyter Notebook с использованием окружения Python 3.10.16. И на платформе Kaggle большинство графиков отображается корректно. Но некоторые сложные и комплексные визуализации (например, многомерные графики с цветовой шкалой) не адаптированы из-за ограничений среды. Несмотря на попытки оптимизировать код без существенных изменений, добиться полной совместимости не удалось. Основная проблема заключалась в конфликте версий библиотек и значительном снижении производительности — расчет занимал примерно в 10 раз больше времени по сравнению с локальной машиной MacBook M3 Pro. На Kaggle либо корректно выполнялись операции с использованием PyCaret, либо работали модели машинного обучения, но не обе части одновременно.
Предлагается гибридный вариант работы:
- Публикация и вывод метрик на Kaggle для визуализации результатов.
- Локальный расчет и обучение моделей с использованием предварительно настроенного окружения Python 3.10.16. Для воспроизведения экспериментов подготовлена папка Codes
с кодами VSC EDA
, RUL
и файлом libraries_for_modeling
, содержащим список версий всех используемых библиотек.
Готов ответить в комментариях на все вопросы по настройке и запуску кода. И буду признателен за советы по предотвращению подобных проблем.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data_Analysis.ipynb
: A Jupyter Notebook containing the code for the Exploratory Data Analysis (EDA) presented in the thesis. Running this notebook reproduces the plots in the eda_plots/
directory.Dataset_Extension.ipynb
: A Jupyter Notebook used for the data enrichment process. It takes the raw `Inference_data.csv
` and produces the Inference_data_Extended.csv
by adding detailed hardware specifications, cost estimates, and derived energy metrics.Optimization_Model.ipynb
: The main Jupyter Notebook for the core contribution of this thesis. It contains the code to perform the 5-fold cross-validation, train the final predictive models, generate the Pareto-optimal recommendations, and create the final result figures.Inference_data.csv
: The raw, unprocessed data collected from the official MLPerf Inference v4.0 results.Inference_data_Extended.csv
: The final, enriched dataset used for all analysis and modeling. This is the output of the Dataset_Extension.ipynb
notebook.eda_log.txt
: A text log file containing summary statistics generated during the exploratory data analysis.requirements.txt
: A list of all necessary Python libraries and their versions required to run the code in this repository.eda_plots/
: A directory containing all plots (correlation matrices, scatter plots, box plots) generated by the EDA notebook.optimization_models_final/
: A directory where the trained and saved final model files (.joblib
) are stored after running the optimization notebook.pareto_validation_plot_fold_0.png
: The validation plot comparing the true vs. predicted Pareto fronts, as presented in the thesis.shap_waterfall_final_model.png
: The SHAP plot used for the model interpretability analysis, as presented in the thesis.
bash
git clone
cd
bash
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
bash
pip install -r requirements.txt
Inference_data_Extended.csv
`) is already provided. However, if you wish to reproduce the enrichment process from scratch, you can run the **`Dataset_Extension.ipynb
`** notebook. It will take `Inference_data.csv` as input and generate the extended version.eda_plots/
` directory. To regenerate them, run the **`Data_Analysis.ipynb
`** notebook. This will overwrite the existing plots and the `eda_log.txt` file.Optimization_Model.ipynb
notebook will execute the entire pipeline described in the paper:optimization_models_final/
directory.pareto_validation_plot_fold_0.png
and shap_waterfall_final_model.png
.MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Preventive Maintenance for Marine Engines: Data-Driven Insights
Introduction:
Marine engine failures can lead to costly downtime, safety risks and operational inefficiencies. This project leverages machine learning to predict maintenance needs, helping ship operators prevent unexpected breakdowns. Using a simulated dataset, we analyze key engine parameters and develop predictive models to classify maintenance status into three categories: Normal, Requires Maintenance, and Critical.
Overview This project explores preventive maintenance strategies for marine engines by analyzing operational data and applying machine learning techniques.
Key steps include: 1. Data Simulation: Creating a realistic dataset with engine performance metrics. 2. Exploratory Data Analysis (EDA): Understanding trends and patterns in engine behavior. 3. Model Training & Evaluation: Comparing machine learning models (Decision Tree, Random Forest, XGBoost) to predict maintenance needs. 4. Hyperparameter Tuning: Using GridSearchCV to optimize model performance.
Tools Used 1. Python: Data processing, analysis and modeling 2. Pandas & NumPy: Data manipulation 3. Scikit-Learn & XGBoost: Machine learning model training 4. Matplotlib & Seaborn: Data visualization
Skills Demonstrated ✔ Data Simulation & Preprocessing ✔ Exploratory Data Analysis (EDA) ✔ Feature Engineering & Encoding ✔ Supervised Machine Learning (Classification) ✔ Model Evaluation & Hyperparameter Tuning
Key Insights & Findings 📌 Engine Temperature & Vibration Level: Strong indicators of potential failures. 📌 Random Forest vs. XGBoost: After hyperparameter tuning, both models achieved comparable performance, with Random Forest performing slightly better. 📌 Maintenance Status Distribution: Balanced dataset ensures unbiased model training. 📌 Failure Modes: The most common issues were Mechanical Wear & Oil Leakage, aligning with real-world engine failure trends.
Challenges Faced 🚧 Simulating Realistic Data: Ensuring the dataset reflects real-world marine engine behavior was a key challenge. 🚧 Model Performance: The accuracy was limited (~35%) due to the complexity of failure prediction. 🚧 Feature Selection: Identifying the most impactful features required extensive analysis.
Call to Action 🔍 Explore the Dataset & Notebook: Try running different models and tweaking hyperparameters. 📊 Extend the Analysis: Incorporate additional sensor data or alternative machine learning techniques. 🚀 Real-World Application: This approach can be adapted for industrial machinery, aircraft engines, and power plants.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 dataset in Japan’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/lisphilar/covid19-dataset-in-japan on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This is a COVID-19 dataset in Japan. This does not include the cases in Diamond Princess cruise ship (Yokohama city, Kanagawa prefecture) and Costa Atlantica cruise ship (Nagasaki city, Nagasaki prefecture). - Total number of cases in Japan - The number of vaccinated people (New/experimental) - The number of cases at prefecture level - Metadata of each prefecture
Note: Lisphilar (author) uploads the same files to https://github.com/lisphilar/covid19-sir/tree/master/data
This dataset can be retrieved with CovsirPhy (Python library).
pip install covsirphy --upgrade
import covsirphy as cs
data_loader = cs.DataLoader()
japan_data = data_loader.japan()
# The number of cases (Total/each province)
clean_df = japan_data.cleaned()
# Metadata
meta_df = japan_data.meta()
Please refer to CovsirPhy Documentation: Japan-specific dataset.
Note: Before analysing the data, please refer to Kaggle notebook: EDA of Japan dataset and COVID-19: Government/JHU data in Japan. The detailed explanation of the build process is discussed in Steps to build the dataset in Japan. If you find errors or have any questions, feel free to create a discussion topic.
covid_jpn_total.csv
Cumulative number of cases:
- PCR-tested / PCR-tested and positive
- with symptoms (to 08May2020) / without symptoms (to 08May2020) / unknown (to 08May2020)
- discharged
- fatal
The number of cases: - requiring hospitalization (from 09May2020) - hospitalized with mild symptoms (to 08May2020) / severe symptoms / unknown (to 08May2020) - requiring hospitalization, but waiting in hotels or at home (to 08May2020)
In primary source, some variables were removed on 09May2020. Values are NA in this dataset from 09May2020.
Manually collected the data from Ministry of Health, Labour and Welfare HP:
厚生労働省 HP (in Japanese)
Ministry of Health, Labour and Welfare HP (in English)
The number of vaccinated people:
- Vaccinated_1st
: the number of vaccinated persons for the first time on the date
- Vaccinated_2nd
: the number of vaccinated persons with the second dose on the date
- Vaccinated_3rd
: the number of vaccinated persons with the third dose on the date
Data sources for vaccination: - To 09Apr2021: 厚生労働省 HP 新型コロナワクチンの接種実績(in Japanese) - 首相官邸 新型コロナワクチンについて - From 10APr2021: Twitter: 首相官邸(新型コロナワクチン情報)
covid_jpn_prefecture.csv
Cumulative number of cases:
- PCR-tested / PCR-tested and positive
- discharged
- fatal
The number of cases: - requiring hospitalization (from 09May2020) - hospitalized with severe symptoms (from 09May2020)
Using pdf-excel converter, manually collected the data from Ministry of Health, Labour and Welfare HP:
厚生労働省 HP (in Japanese)
Ministry of Health, Labour and Welfare HP (in English)
Note:
covid_jpn_prefecture.groupby("Date").sum()
does not match covid_jpn_total
.
When you analyse total data in Japan, please use covid_jpn_total
data.
covid_jpn_metadata.csv
- Population (Total, Male, Female): 厚生労働省 厚生統計要覧(2017年度)第1-5表
- Area (Total, Habitable): Wikipedia 都道府県の面積一覧 (2015)
Hospital_bed: With the primary data of 厚生労働省 感染症指定医療機関の指定状況(平成31年4月1日現在), 厚生労働省 第二種感染症指定医療機関の指定状況(平成31年4月1日現在), 厚生労働省 医療施設動態調査(令和2年1月末概数), 厚生労働省 感染症指定医療機関について and secondary data of COVID-19 Japan 都道府県別 感染症病床数,
Clinic_bed: With the primary data of 医療施設動態調査(令和2年1月末概数) ,
Location: Data is from LinkData 都道府県庁所在地 (Public Domain) (secondary data).
Admin
To create this dataset, edited and transformed data of the following sites was used.
厚生労働省 Ministry of Health, Labour and Welfare, Japan:
厚生労働省 HP (in Japanese)
Ministry of Health, Labour and Welfare HP (in English)
厚生労働省 HP 利用規約・リンク・著作権等 CC BY 4.0 (in Japanese)
国土交通省 Ministry of Land, Infrastructure, Transport and Tourism, Japan: 国土交通省 HP (in Japanese) 国土交通省 HP (in English) 国土交通省 HP 利用規約・リンク・著作権等 CC BY 4.0 (in Japanese)
Code for Japan / COVID-19 Japan: Code for Japan COVID-19 Japan Dashboard (CC BY 4.0) COVID-19 Japan 都道府県別 感染症病床数 (CC BY)
Wikipedia: Wikipedia
LinkData: LinkData (Public Domain)
Kindly cite this dataset under CC BY-4.0 license as follows. - Hirokazu Takaya (2020-2022), COVID-19 dataset in Japan, GitHub repository, https://github.com/lisphilar/covid19-sir/data/japan, or - Hirokazu Takaya (2020-2022), COVID-19 dataset in Japan, Kaggle Dataset, https://www.kaggle.com/lisphilar/covid19-dataset-in-japan
--- Original source retains full ownership of the source dataset ---
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Update: I probably won't be able to update the data anymore, as LendingClub now has a scary 'TOS' popup when downloading the data. Worst case, they will ask me/Kaggle to take it down from here.
This dataset contains the full LendingClub data available from their site. There are separate files for accepted and rejected loans. The accepted loans also include the FICO scores, which can only be downloaded when you are signed in to LendingClub and download the data.
See the Python and R getting started kernels to get started:
I created a git repo for the code which is used to create this data: https://github.com/nateGeorge/preprocess_lending_club_data
I wanted an easy way to share all the lending club data with others. Unfortunately, the data on their site is fragmented into many smaller files. There is another lending club dataset on Kaggle, but it wasn't updated in years. It seems like the "Kaggle Team" is updating it now. I think it also doesn't include the full rejected loans, which are included here. It seems like the other dataset confusingly has some of the rejected loans mixed into the accepted ones. Now there are a ton of other LendingClub datasets on here too, most of which seem to have no documentation or explanation of what the data actually is.
The definitions for the fields are on the LendingClub site, at the bottom of the page. Kaggle won't let me upload the .xlsx file for some reason since it seems to be in multiple other data repos. This file seems to be in the other main repo, but again, it's better to get it directly from the source.
Unfortunately, there is (maybe "was" now?) a limit of 500MB for dataset files, so I had to compress the files with gzip in the Python pandas package.
I cleaned the data a tiny bit: I removed percent symbols (%) from int_rate
and revol_util
columns in the accepted loans and converted those columns to floats.
The URL column is in the dataset for completeness, as of 2018 Q2.
Conducted an in-depth analysis of Cyclistic bike-share data to uncover customer usage patterns and trends. Cleaned and processed raw data using Python libraries such as pandas and NumPy to ensure data quality. Performed exploratory data analysis (EDA) to identify insights, including peak usage times, customer demographics, and trip duration patterns. Created visualizations using Matplotlib and Seaborn to effectively communicate findings. Delivered actionable recommendations to enhance customer engagement and optimize operational efficiency.
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
To the electrical engineering community
This dataset contains Q&A prompts about electrical engineering, Kicad's EDA software features and scripting console Python codes.
Authors
STEM.AI: stem.ai.mtl@gmail.comWilliam Harbec
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset contains 1 excel workbook (.xlsx) with 2 sheets.
This data can be used to practice EDA and some data cleaning tasks. Can be used for Data visualization using python Matplotlib and Seaborn libraries.
I used this dataset for a Power BI project also and created a Dashboard on it. Used python inside power query to clean and convert some encoded and Unicode characters from App URL, Name, and Description columns.
Total Columns: 16
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please note that the original dataset was uploaded by nadyinky on Kaggle and is accessible through the following link: https://www.kaggle.com/datasets/nadyinky/sephora-products-and-skincare-reviews
In this dataset, the skincare products have been separated from other products in the reviews datasets, such as cosmetics and makeup, for use in the intended project.
This dataset was collected via Python scraper in March 2023 BY https://www.kaggle.com/nadyinky and contains:
information about all beauty products (over 8,000) from the Sephora online store, including product and brand names, prices, ingredients, ratings, and all features. user reviews (about 1 million on over 2,000 products) of all products from the Skincare category, including user appearances, and review ratings by other users Dataset Usage Examples: - Exploratory Data Analysis (EDA): Explore product categories, regular and discount prices, brand popularity, the impact of different characteristics on price, and ingredient trends - Sentiment Analysis: Is the emotional tone of the review positive, negative, or neutral? Which brands or products have the most positive or negative reviews? - Text Analysis: What do customers say most often in their negative and positive reviews? Do customers have any common problems with their skincare? Recommender System: Analyzing the customer's past purchase history and reviews, suggest products that are likely to be of interest to them - Data Visualization: What are the most popular brands and products? What is the distribution of prices? Which products are closest to each other in ingredients? What does the cloud of the most frequently used words look like?
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F23516597%2F11309e6c4df1437ed2aa6a8fb121daa5%2FScreenshot%202025-04-10%20at%2004.17.42.png?generation=1744233480336962&alt=media" alt="">
https://www.kaggle.com/code/idmitri/exploratory-data-analysis
https://www.kaggle.com/code/idmitri/rul-prediction-modeling
Силовые трансформаторы на АЭС могут эксплуатироваться дольше расчетного срока службы (25 лет), что требует усиленного мониторинга их состояния для обеспечения надежности и безопасности эксплуатации.
Для оценки состояния трансформаторов применяется хроматографический анализ растворенных газов, который позволяет выявлять дефекты по концентрациям газов в масле и прогнозировать остаточный срок службы трансформатора (RUL). Традиционные системы мониторинга ограничиваются фиксированными пороговыми значениями концентраций, снижая точность диагностики и автоматизацию. Методы машинного обучения позволяют выявлять скрытые зависимости и повышать точность прогнозирования. Подробнее: https://habr.com/ru/articles/743682/
В данном проекте проводится глубокий анализ данных (EDA) с созданием 12 групп признаков:
- gases (концентрации газов)
- trend (трендовые компоненты)
- seasonal (сезонные компоненты)
- resid (остаточные компоненты)
- quantiles (квантили распределений)
- volatility (волатильность концентраций)
- range (размах значений)
- coefficient of variation (коэффициент вариации)
- standard deviation (стандартное отклонение)
- skewness (асимметрия распределения)
- kurtosis (эксцесс распределения)
- category (категориальные признаки неисправностей)
Использование статистических и декомпозиционных признаков позволило достичь совпадения точности силуэта распределения RUL с автоматической обработкой выбросов, что ранее требовало ручной корректировки.
Для моделирования использованы алгоритмы машинного обучения (LightGBM, CatBoost, Extra Trees) и их ансамбль. Лучшая точность достигнута моделью LightGBM с оптимизацией гиперпараметров с помощью Optuna: MAE = 61.85, RMSE = 88.21, R2 = 0.8634.
Код для проведения разведочного анализа данных (EDA) был разработан и протестирован локально в VSC Jupyter Notebook с использованием окружения Python 3.10.16. И на платформе Kaggle большинство графиков отображается корректно. Но некоторые сложные и комплексные визуализации (например, многомерные графики с цветовой шкалой) не адаптированы из-за ограничений среды. Несмотря на попытки оптимизировать код без существенных изменений, добиться полной совместимости не удалось. Основная проблема заключалась в конфликте версий библиотек и значительном снижении производительности — расчет занимал примерно в 10 раз больше времени по сравнению с локальной машиной MacBook M3 Pro. На Kaggle либо корректно выполнялись операции с использованием PyCaret, либо работали модели машинного обучения, но не обе части одновременно.
Предлагается гибридный вариант работы:
- Публикация и вывод метрик на Kaggle для визуализации результатов.
- Локальный расчет и обучение моделей с использованием предварительно настроенного окружения Python 3.10.16. Для воспроизведения экспериментов подготовлена папка Codes
с кодами VSC EDA
, RUL
и файлом libraries_for_modeling
, содержащим список версий всех используемых библиотек.
Готов ответить в комментариях на все вопросы по настройке и запуску кода. И буду признателен за советы по предотвращению подобных проблем.