19 datasets found
  1. Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

    • plos.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic (2023). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm [Dataset]. http://doi.org/10.1371/journal.pbio.1002128
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.

  2. Project Priority Matrix (Dynamic Excel Template)

    • kaggle.com
    zip
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asjad (2025). Project Priority Matrix (Dynamic Excel Template) [Dataset]. https://www.kaggle.com/datasets/asjadd/project-priority-matrix-dynamic-excel-template
    Explore at:
    zip(50515 bytes)Available download formats
    Dataset updated
    Oct 24, 2025
    Authors
    Asjad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Project Priority Matrix (Dynamic Excel Tool)

    Overview

    This dataset provides a dynamic Excel model for prioritizing projects based on Feasibility, Impact, and Size.
    It visualizes project data on a Bubble Chart that updates automatically when new projects are added.

    Use this tool to make data-driven prioritization decisions by identifying which projects are most feasible and high-impact.

    Goal

    Organizations often struggle to compare multiple initiatives objectively.
    This matrix helps teams quickly determine which projects to pursue first by visualizing:

    • Feasibility → How achievable a project is
    • Impact → The potential benefit or value it delivers
    • Size → The level of effort or resources required

    How It Works

    1. Each project is rated on a 1–10 scale for:
      • Feasibility
      • Impact
      • Size
    2. The Excel file uses a Bubble Chart:
      • X-axis: Feasibility
      • Y-axis: Impact
      • Bubble size: Project Size
    3. The chart automatically updates when new projects or scores are added.

    Example (partial data):

    CriteriaProject 1Project 2Project 3Project 4Project 5Project 6Project 7Project 8
    Feasibility79527268
    Impact84466777
    Size102374431

    Interpretation Guide

    QuadrantDescriptionAction
    High Feasibility / High ImpactQuick winsTop Priority
    High Impact / Low FeasibilityValuable but riskyPlan carefully
    Low Impact / High FeasibilityEasy but minor valueOptional
    Low Impact / Low FeasibilityLow returnDefer or drop

    Excel Features

    • Dynamic Bubble Chart (updates with new data)
    • Named Ranges for auto-expanding data
    • Optional Conditional Formatting
    • Data Validation for consistent scoring

    How to Use

    1. Download and open Project_Priority_Matrix.xlsx.
    2. Go to the Data sheet.
    3. Add your project names and scores (1–10).
    4. Watch the chart update instantly to reflect your data.

    You can use this for: - Portfolio management
    - Product or feature prioritization
    - Strategy planning workshops

    File Information

    • File: Project_Priority_Matrix.xlsx
    • Format: Excel (.xlsx)
    • Version: 1.0
    • Last Updated: October 2025

    License

    Free for personal and organizational use.
    Attribution is appreciated if you share or adapt this file.

    Author: [Asjad]
    Contact: [m.asjad2000@gmail.com]
    Compatible With: Microsoft Excel 2019+ / Office 365

  3. Data from: Excel Templates: A Helpful Tool for Teaching Statistics

    • tandf.figshare.com
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alejandro Quintela-del-Río; Mario Francisco-Fernández (2023). Excel Templates: A Helpful Tool for Teaching Statistics [Dataset]. http://doi.org/10.6084/m9.figshare.3408052.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Alejandro Quintela-del-Río; Mario Francisco-Fernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article describes a free, open-source collection of templates for the popular Excel (2013, and later versions) spreadsheet program. These templates are spreadsheet files that allow easy and intuitive learning and the implementation of practical examples concerning descriptive statistics, random variables, confidence intervals, and hypothesis testing. Although they are designed to be used with Excel, they can also be employed with other free spreadsheet programs (changing some particular formulas). Moreover, we exploit some possibilities of the ActiveX controls of the Excel Developer Menu to perform interactive Gaussian density charts. Finally, it is important to note that they can be often embedded in a web page, so it is not necessary to employ Excel software for their use. These templates have been designed as a useful tool to teach basic statistics and to carry out data analysis even when the students are not familiar with Excel. Additionally, they can be used as a complement to other analytical software packages. They aim to assist students in learning statistics, within an intuitive working environment. Supplementary materials with the Excel templates are available online.

  4. 18 excel spreadsheets by species and year giving reproduction and growth...

    • catalog.data.gov
    • data.wu.ac.at
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). 18 excel spreadsheets by species and year giving reproduction and growth data. One excel spreadsheet of herbicide treatment chemistry. [Dataset]. https://catalog.data.gov/dataset/18-excel-spreadsheets-by-species-and-year-giving-reproduction-and-growth-data-one-excel-sp
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Excel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).

  5. Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  6. Sales Dashboard in Microsoft Excel

    • kaggle.com
    zip
    Updated Apr 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavana Joshi (2023). Sales Dashboard in Microsoft Excel [Dataset]. https://www.kaggle.com/datasets/bhavanajoshij/sales-dashboard-in-microsoft-excel/discussion
    Explore at:
    zip(253363 bytes)Available download formats
    Dataset updated
    Apr 14, 2023
    Authors
    Bhavana Joshi
    Description

    This interactive sales dashboard is designed in Excel for B2C type of Businesses like Dmart, Walmart, Amazon, Shops & Supermarkets, etc. using Slicers, Pivot Tables & Pivot Chart.

    Dashboard Overview

    1. Sales dashboard ==> basically, it is designed for the B2C type of business. like Dmart, Walmart, Amazon, Shops & supermarkets, etc.
    2. Slices ==> slices are used to drill down the data, on the basis of yearly, monthly, by sales type, and by mode of payment.
    3. Total Sales/Total Profits ==> here is, the total sales, total profit, and profit percentage these all are combined into a monthly format and we can hide or unhide it to view it as individually or comparative.
    4. Product Visual ==> the visual indicates product-wise sales for the selected period. Only 10 products are visualized at a glance, and you can scroll up & down to view other products in the list.
    5. Daily Sales ==> It shows day-wise sales. (Area Chart)
    6. Sales Type/Payment Mode ==> It shows sales percentage contribution based on the type of selling and mode of payment.
    7. Top Product & Category ==> this is for the top-selling product and product category.
    8. Category ==> the final one is the category-wise sales contribution.

    Datasheets Overview

    1. The dataset has the master data sheet or you can call it a catalog. It is added in the table form.
    2. The first column is the product ID the list of items in this column is unique.
    3. Then we have the product column instead of these two columns, we can manage with only one also but I kept it separate because sometimes product names can be the same, but some parameters will be different, like price, supplier, etc.
    4. The next column is the category column, which is the product category. like cosmetics, foods, drinks, electronics, etc.
    5. Then we have 4th column which is the unit of measure (UOM) you can update it also, based on the products you have.
    6. And the last two columns are buying price and selling price, which means unit purchasing price and unit selling price.

    Input Sheet

    The first column is the date of Selling. The second column is the product ID. The third column is quantity. The fourth column is sales types, like direct selling, are purchased by a wholesaler or ordered online. The fifth column is a mode of payment, which is online or in cash. You can update these two as per requirements. The last one is a discount percentage. if you want to offer any discount, you can add it here.

    Analysis Sheet: where all backend calculations are performed.

    So, basically these are the four sheets mentioned above with different tasks.

    However, a sales dashboard enables organizations to visualize their real-time sales data and boost productivity.

    A dashboard is a very useful tool that brings together all the data in the forms of charts, graphs, statistics and many more visualizations which lead to data-driven and decision making.

    Questions & Answers

    1. What percentage of profit ratio of sales are displayed in the year 2021 and year 2022? ==> Total profit ratio of sales in the year 2021 is 19% with large sales of PRODUCT42, whereas profit ratio of sales for 2022 is 22% with large sales of PRODUCT30.
    2. Which is the top product that have large number of sales in year 2021-2022? ==> The top product in the year 2021 is PRODUCT42 with the total sales of $12,798 whereas in the year 2022 the top product is PRODUCT30 with the total sales of $13,888.
    3. In Area Chart which product is highly sold on 28th April 2022? ==> The large number of sales on 28th April 2022 is for PRODUCT14 with a 24% of profit ratio.
    4. What is the sales type and payment mode present? ==> The sale type and payment modes show the sales percentage contribution based on the type of selling and mode of payment. Here, the sale types are Direct Sales with 52%, Online Sales with 33% and Wholesaler with 15%. Also, the payment modes are Online mode and Cash equally distributed with 50%.
    5. In which month the direct sales are highest in the year 2022? ==> The highest direct sales can be easily identified which is designed by monthly format and it’s the November month where direct sales are highest with 28% as compared with other months.
    6. Which payment mode is highly received in the year 2021 and year 2022? ==> The payments received in the year 2021 are the cash payments with 52% as compared with online transactions which are 48%. Also, the cash payment highly received is in the month of March, July and October with direct sales of 42%, Online with 45% and wholesaler with 13% with large sales of PRODUCT24. ==> The payments received in the year 2022 are the Online payments with 52% as compared with cash payments which are 48%. Also, the online payment highly received is in the month of Jan, Sept and December with direct sales of 45%, Online with 37% and whole...
  7. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  8. C

    New Issues for New Sites Graph

    • data.cityofchicago.org
    csv, xlsx, xml
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). New Issues for New Sites Graph [Dataset]. https://data.cityofchicago.org/w/mr4w-ra5c/3q3f-6823?cur=1U-alnuO2va
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Dec 1, 2025
    Authors
    City of Chicago
    Description

    This dataset contains all current and active business licenses issued by the Department of Business Affairs and Consumer Protection. This dataset contains a large number of records /rows of data and may not be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Notepad or Wordpad, to view and search.

    Data fields requiring description are detailed below.

    APPLICATION TYPE: 'ISSUE' is the record associated with the initial license application. 'RENEW' is a subsequent renewal record. All renewal records are created with a term start date and term expiration date. 'C_LOC' is a change of location record. It means the business moved. 'C_CAPA' is a change of capacity record. Only a few license types my file this type of application. 'C_EXPA' only applies to businesses that have liquor licenses. It means the business location expanded.

    LICENSE STATUS: 'AAI' means the license was issued.

    Business license owners may be accessed at: http://data.cityofchicago.org/Community-Economic-Development/Business-Owners/ezma-pppn To identify the owner of a business, you will need the account number or legal name.

    Data Owner: Business Affairs and Consumer Protection

    Time Period: Current

    Frequency: Data is updated daily

  9. m

    Excel Force MSC Bhd - Change-To-Liabilities

    • macro-rankings.com
    csv, excel
    Updated Sep 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Excel Force MSC Bhd - Change-To-Liabilities [Dataset]. https://www.macro-rankings.com/markets/stocks/0065-klse/cashflow-statement/change-to-liabilities
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Sep 8, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    malaysia
    Description

    Change-To-Liabilities Time Series for Excel Force MSC Bhd. Excel Force MSC Berhad, together with its subsidiaries, develops, provides, and maintains software application solutions for the financial services industry in Malaysia. The company operates through Application Solutions, Maintenance Services, Application Services Provider, and Other segments. Its product portfolio includes CyberStock BTX, a bridging trader and exchange system platform that provides trading tools classes; and CyberStock ECOS, a stock broking solution which offers real time market information, place trades, and manage orders solution. In addition, the company provides CyberStock Mobile Trader, a mobile trading system that connects users smartphones to exchanges to manage trading activities; and CyberStock EDS, an exempt dealer system that provides advanced trading infrastructure and facilities for commercial banks. Further, it offers CyberStock SMF, a share margin financing system that enables financial institutions, brokerage firms, and banks to operate and manage margin financing services; and CyberStock CNS, a custodian and nominee system, which provides value-added services, such as trade settlement, cash balances investment, income collection, corporate actions processing, recordkeeping and reporting to custodian banks for domestic services. Additionally, the company provides CyberStock BOS, a back office system to manage enormous file and data; and offers network and security services. Excel Force MSC Berhad was founded in 1994 and is based in Petaling Jaya, Malaysia.

  10. f

    Excel file for graphs in Fig 4.

    • figshare.com
    xlsx
    Updated May 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claire M. Lye; Guy B. Blanchard; Jenny Evans; Alexander Nestor-Bergmann; Bénédicte Sanson (2024). Excel file for graphs in Fig 4. [Dataset]. http://doi.org/10.1371/journal.pbio.3002611.s014
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 9, 2024
    Dataset provided by
    PLOS Biology
    Authors
    Claire M. Lye; Guy B. Blanchard; Jenny Evans; Alexander Nestor-Bergmann; Bénédicte Sanson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for each graph (A, B, D) is given in a separate sheet containing raw data values of x and y axes, along with the corresponding cell and embryo identifier for each data point when appropriate (cell identifier and embryo name, respectively). Each sheet is labelled with the relevant figure panel number. (XLSB)

  11. u

    Temperature, salinity and rainfall analysis of the Olifants and Breede...

    • researchdata.up.ac.za
    bin
    Updated Aug 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edwin Greyling (2023). Temperature, salinity and rainfall analysis of the Olifants and Breede estuaries [Dataset]. http://doi.org/10.25403/UPresearchdata.23807511.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 1, 2023
    Dataset provided by
    University of Pretoria
    Authors
    Edwin Greyling
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This MS Excel data has been processed into line graphs to create time series line graphs and data tables which give insight into changing physiochemical water quality characteristics and influences. The study sets out to determine if climate change has had an influence on physiochemical water quality characteristics both within and between the Breede and Olifants estuaries over a nine year monitoring period. The data represents changes and comparisons between salinity, temperature and rainfall within and between the Olifants and Breede river estuaries in the Wester Cape Province of South Africa.

  12. C

    Renewals for Renewal Sites Graph

    • data.cityofchicago.org
    csv, xlsx, xml
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Renewals for Renewal Sites Graph [Dataset]. https://data.cityofchicago.org/Community-Economic-Development/Renewals-for-Renewal-Sites-Graph/dku7-f6m9
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 1, 2025
    Authors
    City of Chicago
    Description

    This dataset contains all current and active business licenses issued by the Department of Business Affairs and Consumer Protection. This dataset contains a large number of records /rows of data and may not be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Notepad or Wordpad, to view and search.

    Data fields requiring description are detailed below.

    APPLICATION TYPE: 'ISSUE' is the record associated with the initial license application. 'RENEW' is a subsequent renewal record. All renewal records are created with a term start date and term expiration date. 'C_LOC' is a change of location record. It means the business moved. 'C_CAPA' is a change of capacity record. Only a few license types my file this type of application. 'C_EXPA' only applies to businesses that have liquor licenses. It means the business location expanded.

    LICENSE STATUS: 'AAI' means the license was issued.

    Business license owners may be accessed at: http://data.cityofchicago.org/Community-Economic-Development/Business-Owners/ezma-pppn To identify the owner of a business, you will need the account number or legal name.

    Data Owner: Business Affairs and Consumer Protection

    Time Period: Current

    Frequency: Data is updated daily

  13. D

    Graph Database Platforms For Supply Chain Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Graph Database Platforms For Supply Chain Market Research Report 2033 [Dataset]. https://dataintelo.com/report/graph-database-platforms-for-supply-chain-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Graph Database Platforms for Supply Chain Market Outlook



    According to our latest research, the global market size for Graph Database Platforms for Supply Chain reached USD 1.54 billion in 2024, driven by the increasing complexity of supply chain operations and the need for advanced data analytics. The market is expected to grow at a robust CAGR of 22.1% from 2025 to 2033, reaching USD 8.03 billion by 2033. This significant growth is primarily fueled by the rising adoption of digital transformation initiatives across industries, coupled with the demand for real-time supply chain visibility and risk management capabilities.




    One of the primary growth drivers for the Graph Database Platforms for Supply Chain market is the rapidly increasing complexity of global supply chains. As organizations expand their operations across borders and deal with a multitude of suppliers, logistics partners, and regulatory environments, traditional relational databases often fall short in capturing the intricate relationships and dependencies inherent in modern supply chains. Graph database platforms excel in visualizing and analyzing these connections, enabling companies to identify bottlenecks, mitigate risks, and optimize workflows. The ability to map out entire supply chain networks in real time allows businesses to make faster, more informed decisions, which is crucial in today’s volatile market environment where disruptions are frequent and costly.




    Another significant factor propelling market growth is the surging demand for enhanced supply chain transparency and traceability. With increasing consumer expectations, stricter regulatory requirements, and the ongoing need to combat fraud and counterfeiting, companies are investing heavily in technologies that provide end-to-end visibility. Graph database platforms allow organizations to track the journey of goods and materials from origin to destination, facilitating compliance with industry standards and improving accountability. This capability is especially vital in industries such as food & beverage, pharmaceuticals, and automotive, where product recalls and quality issues can have severe financial and reputational consequences. The integration of graph database platforms with IoT devices and blockchain further amplifies their value, offering real-time insights and immutable records for every transaction and movement within the supply chain.




    The growing emphasis on supply chain resilience and agility in response to global disruptions, such as the COVID-19 pandemic and geopolitical tensions, has also accelerated the adoption of graph database platforms. Organizations are increasingly recognizing the need to proactively identify vulnerabilities and simulate various scenarios to ensure business continuity. Graph databases facilitate advanced risk modeling and predictive analytics, empowering supply chain leaders to anticipate disruptions, evaluate alternative sourcing strategies, and maintain optimal inventory levels. As the frequency and impact of supply chain shocks continue to rise, the demand for intelligent platforms that can quickly adapt to changing conditions is expected to sustain the market’s momentum over the next decade.




    From a regional perspective, North America currently dominates the Graph Database Platforms for Supply Chain market, accounting for the largest share in 2024. This dominance is attributed to the early adoption of advanced technologies, strong presence of key market players, and a mature supply chain ecosystem. However, Asia Pacific is projected to exhibit the fastest growth rate during the forecast period, driven by the rapid expansion of manufacturing and e-commerce sectors, increasing investments in digital infrastructure, and a growing focus on supply chain optimization. Europe also remains a significant market, supported by stringent regulatory standards and a strong emphasis on sustainability and risk management. The Middle East & Africa and Latin America are gradually emerging as promising markets, buoyed by rising industrialization and efforts to modernize supply chain operations.



    Component Analysis



    The Graph Database Platforms for Supply Chain market is segmented by component into software and services. The software segment currently holds the largest share of the market, as organizations increasingly invest in robust platforms that can handle vast and complex datasets. These software solutions are designed to provide advanced analytics, visuali

  14. m

    Data for: The Value of Immediate Postoperative Radiographs Following...

    • data.mendeley.com
    Updated May 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher Mercure (2020). Data for: The Value of Immediate Postoperative Radiographs Following Fluoroscopically-guided Orthopaedic Surgery in a Polytrauma ICU Setting in KwaZulu-Natal, South Africa [Dataset]. http://doi.org/10.17632/dfhxxknmjs.1
    Explore at:
    Dataset updated
    May 5, 2020
    Authors
    Christopher Mercure
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    KwaZulu-Natal, South Africa
    Description

    Admission lists to identify patients that match inclusion criteria excel charts that document the number of cases that needed change in management

  15. B

    Field Variable Permeability Tests (Slug Tests) in Boreholes Made by Driven...

    • borealisdata.ca
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert P. Chapuis (2024). Field Variable Permeability Tests (Slug Tests) in Boreholes Made by Driven Flush-Joint Casings, or Driven Flush-Joint Casing Permeameters, or Between Packers in Cored Rock Boreholes, or in Monitoring Wells ― Overdamped Response / Essais de perméabilité à niveau variable (Slug Tests) dans des forages faits avec un tubage battu à joints lisses, ou un perméamètre battu à joints lisses, ou entre des obturateurs dans un trou foré dans le roc, ou dans un puits de surveillance ― Cas de la réponse suramortie [Dataset]. http://doi.org/10.5683/SP2/YUAUGX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Borealis
    Authors
    Robert P. Chapuis
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Civil and geological engineers have used field variable-head permeability tests (VH tests or slug tests) for over one century to assess the local hydraulic conductivity of tested soils and rocks. The water level in the pipe or riser casing reaches, after some rest time, a static position or elevation, z2. Then, the water level position is changed rapidly, by adding or removing some water volume, or by inserting or removing a solid slug. Afterward, the water level position or elevation z1(t) is recorded vs. time t, yielding a difference in hydraulic head or water column defined as Z(t) = z1(t) - z2. The water level at rest is assumed to be the piezometric level or PL for the tested zone, before drilling a hole and installing test equipment. All equations use Z(t) or Z*(t) = Z(t) / Z(t=0). The water-level response vs. time may be a slow return to equilibrium (overdamped test), or an oscillation back to equilibrium (underdamped test). This document deals exclusively with overdamped tests. Their data may be analyzed using several methods, known to yield different results for the hydraulic conductivity. The methods fit in three groups: group 1 neglects the influence of the solid matrix strain, group 2 is for tests in aquitards with delayed strain caused by consolidation, and group 3 takes into account some elastic and instant solid matrix strain. This document briefly explains what is wrong with certain theories and why. It shows three ways to plot the data, which are the three diagnostic graphs. According to experience with thousands of tests, most test data are biased by an incorrect estimate z2 of the piezometric level at rest. The derivative or velocity plot does not depend upon this assumed piezometric level, but can verify its correctness. The document presents experimental results and explains the three-diagnostic graphs approach, which unifies the theories and, most important, yields a user-independent result. Two free spreadsheet files are provided. The spreadsheet "Lefranc-Test-English-Model" follows the Canadian standards and is used to explain how to treat correctly the test data to reach a user-independent result. The user does not modify this model spreadsheet but can make as many copies as needed, with different names. The user can treat any other data set in a copy, and can also modify any copy if needed. The second Excel spreadsheet contains several sets of data that can be used to practice with the copies of the model spreadsheet. En génie civil et géologique, on a utilisé depuis plus d'un siècle les essais in situ de perméabilité à niveau variable (essais VH ou slug tests), afin d'évaluer la conductivité hydraulique locale des sols et rocs testés. Le niveau d'eau dans le tuyau ou le tubage prend, après une période de repos, une position ou élévation statique, z2. Ensuite, on modifie rapidement la position du niveau d'eau, en ajoutant ou en enlevant rapi-dement un volume d'eau, ou en insérant ou retirant un objet solide. La position ou l'élévation du niveau d'eau, z1(t), est alors notée en fonction du temps, t, ce qui donne une différence de charge hydraulique définie par Z(t) = z1(t) - z2. Le niveau d'eau au repos est supposé être le niveau piézométrique pour la zone testée, avant de forer un trou et d'installer l'équipement pour un essai. Toutes les équations utilisent Z(t) ou Z*(t) = Z(t) / Z(t=0). La réponse du niveau d'eau avec le temps peut être soit un lent retour à l'équilibre (cas suramorti) soit une oscillation amortie retournant à l'équilibre (cas sous-amorti). Ce document ne traite que des cas suramortis. Leurs données peuvent être analysées à l'aide de plusieurs méthodes, connues pour donner des résultats différents pour la conductivité hydraulique. Les méthodes appartiennent à trois groupes : le groupe 1 néglige l'influence de la déformation de la matrice solide, le groupe 2 est pour les essais dans des aquitards avec une déformation différée causée par la consolidation, et le groupe 3 prend en compte une certaine déformation élastique et instantanée de la matrice solide. Ce document explique brièvement ce qui est incorrect dans les théories et pourquoi. Il montre trois façons de tracer les données, qui sont les trois graphiques de diagnostic. Selon l'expérience de milliers d'essais, la plupart des données sont biaisées par un estimé incorrect de z2, le niveau piézométrique supposé. Le graphe de la dérivée ou graphe des vitesses ne dépend pas de la valeur supposée pour le niveau piézomé-trique, mais peut vérifier son exactitude. Le document présente des résultats expérimentaux et explique le diagnostic à trois graphiques, qui unifie les théories et donne un résultat indépendant de l'utilisateur, ce qui est important. Deux fichiers Excel gratuits sont fournis. Le fichier"Lefranc-Test-English-Model" suit les normes canadiennes : il sert à expliquer comment traiter correctement les données d'essai pour avoir un résultat indépendant de l'utilisateur. Celui-ci ne modifie pas ce...

  16. D

    Manufacturing Knowledge Graph Platform Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Manufacturing Knowledge Graph Platform Market Research Report 2033 [Dataset]. https://dataintelo.com/report/manufacturing-knowledge-graph-platform-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Manufacturing Knowledge Graph Platform Market Outlook




    According to our latest research, the global Manufacturing Knowledge Graph Platform market size reached USD 1.42 billion in 2024, reflecting a robust trajectory as enterprises accelerate digital transformation initiatives. The market is projected to expand at a CAGR of 24.1% from 2025 to 2033, reaching an estimated USD 11.52 billion by 2033. This remarkable growth is primarily driven by the manufacturing sector’s increasing need for advanced data integration, real-time insights, and enhanced decision-making capabilities, as knowledge graph platforms become central to Industry 4.0 strategies.




    The proliferation of connected devices and the exponential growth of industrial data are among the key factors propelling the adoption of knowledge graph platforms in manufacturing. Modern manufacturing environments generate vast amounts of heterogeneous data from sensors, machines, enterprise systems, and external sources. Traditional data management tools often struggle to provide context and actionable insights from such complex datasets. Knowledge graph platforms, with their ability to semantically integrate and relate diverse data points, enable manufacturers to unlock hidden value, improve operational transparency, and drive smarter, data-driven decisions across the production lifecycle. This capability is particularly crucial for organizations seeking to optimize processes, ensure quality, and maintain competitiveness in an increasingly digitalized marketplace.




    Another significant growth driver is the rising emphasis on predictive maintenance and process optimization. Manufacturers are under constant pressure to reduce downtime, minimize costs, and enhance asset utilization. Knowledge graph platforms facilitate the creation of comprehensive digital twins and interconnected knowledge networks that can analyze patterns, detect anomalies, and predict equipment failures before they occur. By leveraging advanced AI and machine learning algorithms, these platforms empower manufacturers to transition from reactive to proactive maintenance strategies, thereby reducing unplanned outages and extending asset lifespans. Moreover, knowledge graphs support continuous process improvement by providing holistic views of workflows, dependencies, and bottlenecks, enabling agile responses to changing market demands.




    Regulatory compliance and supply chain resilience have also emerged as critical considerations fueling market growth. Increasingly stringent regulations in industries such as automotive, pharmaceuticals, and food & beverage require manufacturers to maintain detailed records, ensure traceability, and demonstrate accountability across their operations. Knowledge graph platforms excel at mapping complex relationships between entities, processes, and compliance requirements, simplifying audit trails and risk management. Additionally, the disruptions caused by global events have highlighted the importance of resilient and transparent supply chains. By integrating internal and external data sources, knowledge graphs help manufacturers identify vulnerabilities, optimize sourcing strategies, and enhance collaboration with suppliers and partners.




    From a regional perspective, North America currently leads the Manufacturing Knowledge Graph Platform market, accounting for a significant share due to the early adoption of advanced digital technologies and the presence of major manufacturing hubs. Europe follows closely, supported by strong government initiatives promoting Industry 4.0 and digital innovation. Meanwhile, the Asia Pacific region is experiencing the fastest growth, driven by rapid industrialization, expanding manufacturing bases, and increasing investments in smart factory solutions across China, Japan, and India. The Middle East & Africa and Latin America are also witnessing growing interest, particularly as manufacturers in these regions seek to enhance operational efficiency and global competitiveness.



    Component Analysis




    The Manufacturing Knowledge Graph Platform market is segmented by component into Software and Services. The software segment dominates the market, accounting for over 65% of the total revenue in 2024. This dominance is attributed to the critical role of software solutions in enabling semantic data integration, knowledge modeling, and real-t

  17. Excel file for graphs in S3 Fig.

    • plos.figshare.com
    xlsx
    Updated May 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Claire M. Lye; Guy B. Blanchard; Jenny Evans; Alexander Nestor-Bergmann; Bénédicte Sanson (2024). Excel file for graphs in S3 Fig. [Dataset]. http://doi.org/10.1371/journal.pbio.3002611.s017
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 9, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Claire M. Lye; Guy B. Blanchard; Jenny Evans; Alexander Nestor-Bergmann; Bénédicte Sanson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for each graph (A, B, C, D, E, F) is given in a separate sheet containing raw data values of x and y axes, along with the corresponding cell and embryo identifier for each data point when appropriate (cell identifier and embryo name, respectively). Each sheet is labelled with the relevant figure panel number. (XLSB)

  18. Does insecticide resistance expand the host range potential of the aphid...

    • figshare.com
    xlsx
    Updated Mar 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maddie Church (2024). Does insecticide resistance expand the host range potential of the aphid Myzus persicae? - Data [Dataset]. http://doi.org/10.6084/m9.figshare.25476112.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 26, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Maddie Church
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All Comparisons of Differentially Expressed Genes - excel sheet containing the annotations and fold change values of the all the differentially expressed genes between the different clone comparisonsFinal List of Common Genes - excel sheet containing the list of genes that were commonly differentially expressed between all the aphid clone comparisons. Also contains table and bar chart presenting the number of times each candidate gene selected from previous literature was found in each aphid clone comparison.Non-direct and Direct Competition - excel sheet containing number of nymphs produced by all 6 clones on the 3 host plants in the non-direct competition, and the number of nymphs produced by the two clones NS and Viola in the direct competition experiment.sterror - excel sheet containing the means and standard error values of the 6 grouped resistant and susceptible clones in the non-direct competition experiment, used to make the bar plot for the non-direct competition experiment.sterror2 - excel sheet containing the means and standard error values of the resistant clone Viola and susceptible clone NS in the direct competition experiment, used to make the bar plot for the direct competition experiment.cabbagettest - excel sheet containing the number of nymphs produce by the 6 grouped resistant and susceptible clones on the 3 host plants, used to conduct the unpaired t tests to compare the reproductive performance of resistant and susceptible clones on the 3 different host plants when in not in competitiondirectcompetition - excel sheet containing the number of nymphs produce by the resistant clone Viola and susceptible clone NS on the 3 host plants, used to conduct the unpaired t tests comparing the reproductive performance of resistant and susceptible clones on the 3 different host plants when in direct competitionAPHID HOST SHIFT DISS Rscript - R script containing all my statistical tests: unpaired t tests of resistant and susceptible clones on the 3 host plants when in direct and non direct competition, and kruskal Wallis tests and post hoc Dunns test to identify significant differences between individual and resistant and susceptible clones on the different host plants. Also contains all my code for my bar charts for the non-direct and direct competition experiments and the code for my box plots showing the significant differences between individual clones and resistant and susceptible clones on the different host plants.Up and Down-regulated Genes Graph - excel sheet containing the number of and and down regulated genes in each aphid clone comparison and the bar graph generated from this data.

  19. A meta-analysis of factors affecting good prevention practices towards...

    • plos.figshare.com
    bin
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tenagework Eseyneh Dagnaw; Amare Mebrat Delie; Tadele Derbew Kassie; Sileshi Berihun; Hiwot Tesfa; Amare Zewdie (2024). A meta-analysis of factors affecting good prevention practices towards COVID-19 among students in Ethiopia. [Dataset]. http://doi.org/10.1371/journal.pone.0314451.t006
    Explore at:
    binAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tenagework Eseyneh Dagnaw; Amare Mebrat Delie; Tadele Derbew Kassie; Sileshi Berihun; Hiwot Tesfa; Amare Zewdie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ethiopia
    Description

    A meta-analysis of factors affecting good prevention practices towards COVID-19 among students in Ethiopia.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic (2023). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm [Dataset]. http://doi.org/10.1371/journal.pbio.1002128
Organization logo

Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm

Explore at:
312 scholarly articles cite this dataset (View in Google Scholar)
docxAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Tracey L. Weissgerber; Natasa M. Milic; Stacey J. Winham; Vesna D. Garovic
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.

Search
Clear search
Close search
Google apps
Main menu