This graph shows the educational attainment of the U.S. population from in 2018, according to ethnicity. Around 56.5 percent of Asians and Pacific Islanders in the U.S. have graduated from college or obtained a higher educational degree in 2018.
This layer shows education level for adults (25+) by race by sex. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of adults age 25+ who have a bachelor's degree or higher as their highest education level. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B15002, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, C15002I (Not all lines of these ACS tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
In 2023, the mean income of Black Bachelor's degree holders was ****** U.S. dollars, compared to ****** U.S. dollars for White Americans with a Bachelor's degree.
The American Community Survey (ACS) is designed to estimate the characteristic distribution of populations and estimated counts should only be used to calculate percentages. They do not represent the actual population counts or totals. Beginning in 2019, the Washington Student Achievement Council (WSAC) has measured educational attainment for the Roadmap Progress Report using one-year American Community Survey (ACS) data from the United States Census Bureau. These public microdata represents the most current data, but it is limited to areas with larger populations leading to some multi-county regions*. *The American Community Survey is not the official source of population counts. It is designed to show the characteristics of the nation's population and should not be used as actual population counts or housing totals for the nation, states or counties. The official population count — including population by age, sex, race and Hispanic origin — comes from the once-a-decade census, supplemented by annual population estimates (which do not typically contain educational attainment variables) from the following groups and surveys: -- Washington State Office of Financial Management (OFM): https://www.ofm.wa.gov/washington-data-research/population-demographics -- US Census Decennial Census: https://www.census.gov/programs-surveys/decennial-census.html and Population Estimates Program: https://www.census.gov/programs-surveys/popest.html **In prior years, WSAC used both the five-year and three-year (now discontinued) data. While the 5-year estimates provide a larger sample, they are not recommended for year to year trends and also are released later than the one-year files. Detailed information about the ACS at https://www.census.gov/programs-surveys/acs/guidance.html
In 2022, about 37.7 percent of the U.S. population who were aged 25 and above had graduated from college or another higher education institution, a slight decline from 37.9 the previous year. However, this is a significant increase from 1960, when only 7.7 percent of the U.S. population had graduated from college. Demographics Educational attainment varies by gender, location, race, and age throughout the United States. Asian-American and Pacific Islanders had the highest level of education, on average, while Massachusetts and the District of Colombia are areas home to the highest rates of residents with a bachelor’s degree or higher. However, education levels are correlated with wealth. While public education is free up until the 12th grade, the cost of university is out of reach for many Americans, making social mobility increasingly difficult. Earnings White Americans with a professional degree earned the most money on average, compared to other educational levels and races. However, regardless of educational attainment, males typically earned far more on average compared to females. Despite the decreasing wage gap over the years in the country, it remains an issue to this day. Not only is there a large wage gap between males and females, but there is also a large income gap linked to race as well.
Provisional counts of deaths in the United States by race and educational attainment. The dataset includes cumulative provisional counts of death for COVID-19, coded to ICD-10 code U07.1 as an underlying or multiple cause of death.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset provides population 25 years and over estimates by sex, race and educational attainment for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Tables C15002A, C15002B, C15002C, C15002D, C15002E, C15002F, and C15002G.
Sex categories: Male, Female, and Both.
Race categories: White Alone, Black or African American Alone, American Indian and Alaska Native, Asian Alone, Native Hawaiian and Other Pacific Islander Alone, Some Other Race, and Two or More Races.
Educational attainment categories: Less than High School, High School Graduate, Some College or Associates Degree, and Bachelors Degree or Higher.
This dataset was created by Katie Press
This statistic shows the share of women in the United States who held a Bachelor's degree or higher in 2004 and 2014, by race. In 2014, **** percent of Hispanic women over the age of ** held a Bachelor's degree or higher compared with **** percent of White women.
This dataset tracks the updates made on the dataset "AH Provisional COVID-19 Deaths by Race and Educational Attainment" as a repository for previous versions of the data and metadata.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We estimate a sequential model of schooling to assess the major contributing factors to the large gender imbalance in educational attainment within racial groups. First, we find that differences between males and females in measures of early behavior account for the majority of the gender gap for each racial group. Second, we show that black males have the largest response to improvements in family background characteristics, such that equalizing the distribution of family background characteristics for black and white youths reduces the gender gap in college enrollment among black youth by 50%.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Deaths by educational attainment, race, sex, and age group for deaths occurring in the United States. Data are final for 2019 and provisional for 2020. The dataset includes annual counts of death for total deaths and for COVID-19, coded to ICD-10 code U07.1 as an underlying or multiple cause of death.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Percent of population 25 and over who have completed some college or more by race/ethnicity and gender in New Orleans and the United States, 1980, 1990, 2000, 2010, 2016
Educational Attainment By Race. From ACS Table C15002. 5yr ACS 2007-11, By Tract, State of Michigan. Table joined to 2010 TiGER census tracts.
American Community Survey tables and variable definitions: http://www2.census.gov/acs2013_5yr/summaryfile/Sequence_Number_and_Table_Number_Lookup.xls .
This statistic shows cancer mortality rates in the U.S. in 2011, by ethnicity and educational attainment. ***** African-American males with less than 12 years of education per 100,000 inhabitants died of cancer.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The EEO Tabulation is sponsored by four Federal agencies consisting of the Equal Employment Opportunity Commission (EEOC), the Employment Litigation Section of the Civil Rights Division at the Department of Justice (DOJ), the Office of Federal Contract Compliance Programs (OFCCP), and the Office of Personnel Management (OPM), and developed in conjunction with the U.S. Census Bureau..Supporting documentation on code lists and subject definitions can be found on the Equal Employment Opportunity Tabulation website. https://www.census.gov/topics/employment/equal-employment-opportunity-tabulation.html.Source: U.S. Census Bureau, 2014-2018 American Community Survey.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see https://www.census.gov/programs-surveys/acs/technical-documentation.html The effect of nonsampling error is not represented in these tables)..The U.S. Census Bureau collects race data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB). Except for the total, all race and ethnicity categories are mutually exclusive. "Black" refers to Black or African American; "AIAN" refers to American Indian and Alaska Native; and "NHPI" refers to Native Hawaiian and Other Pacific Islander. "Balance of Not Hispanic or Latino" includes the balance of non-Hispanic individuals who reported multiple races or reported Some Other Race alone. For more information on race and Hispanic origin, see the Subject Definitions at https://www.census.gov/programs-surveys/acs/technical-documentation.html..Race and Hispanic origin are separate concepts on the American Community Survey. "White alone Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported race as "White" and no other race. "All other Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported a race other than "White," either alone or in combination..The 2014-2018 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Explanation of Symbols:An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "(X)" means that the estimate is not applicable or not available.An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundLife expectancy at birth in the United States will likely surpass 80 years in the coming decade. Yet recent studies suggest that longevity gains are unevenly shared across age and socioeconomic groups. First, mortality in midlife has risen among non-Hispanic whites. Second, low-educated whites have suffered stalls (men) or declines (women) in adult life expectancy, which is significantly lower than among their college-educated counterparts. Estimating the number of life years lost or gained by age and cause of death, broken down by educational attainment, is crucial in identifying vulnerable populations.Methods and FindingsUsing U.S. vital statistics data from 1990 to 2010, this study decomposes the change in life expectancy at age 25 by age and cause of death across educational attainment groups, broken down by race and gender. The findings reveal that mortality in midlife increased for white women (and to a lesser extent men) with 12 or fewer years of schooling, accounting for most of the stalls or declines in adult life expectancy observed in those groups. Among blacks, mortality declined in nearly all age and educational attainment groups. Although an educational gradient was found across multiple causes of death, between 60 and 80 percent of the gap in adult life expectancy was explained by cardiovascular diseases, smoking-related diseases, and external causes of death. Furthermore, the number of life years lost to smoking-related, external, and other causes of death increased among low- and high school-educated whites, explaining recent stalls or declines in longevity.ConclusionsLarge segments of the American population—particularly low- and high school-educated whites under age 55—are diverging from their college-educated counterparts and losing additional years of life to smoking-related diseases and external causes of death. If this trend continues, old-age mortality may also increase for these birth cohorts in the coming decades.
County-level race and ethnicity estimates for populations 25 years of age and over, cross-tabulated with educational attainment estimates for populations that have less than a high school diploma. Race and ethnicity estimates include the following categories: White alone, Black or African American alone, American Indian or Alaska Native alone, Native Hawaiian or Other Pacific Islander alone, Some Other Race alone, Two or More Races, White alone and Not Hispanic or Latino, Hispanic or Latino, and people of color. Estimates are accompanied by margins of error, coefficients of variation, and percentages. Geometry source: 2020 Census. Attribute source: 2019-2023 American Community Survey 5-year estimates, tables B06009, C15002A, C15002B, C15002C, C15002D, C15002E, C15002F, C15002G, C15002H, and C15002I. Date of last data update: 2024-01-11 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3846 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This filtered view provides population 25 years and over estimates by sex, race and educational attainment for State of Iowa. Data is from the American Community Survey, Five Year Estimates, Tables C15002A, C15002B, C15002C, C15002D, C15002E, C15002F, and C15002G.
Sex categories: Male, Female, and Both.
Race categories: White Alone, Black or African American Alone, American Indian and Alaska Native, Asian Alone, Native Hawaiian and Other Pacific Islander Alone, Some Other Race, and Two or More Races.
Educational attainment categories: Less than High School, High School Graduate, Some College or Associates Degree, and Bachelors Degree or Higher.
Educational attainment data by race and ethnicity from the US Census Bureau's American Community Survey. Data is provided for the City of Everett, Snohomish County, Washington State, and US, as well as all census tracts within Everett.
This graph shows the educational attainment of the U.S. population from in 2018, according to ethnicity. Around 56.5 percent of Asians and Pacific Islanders in the U.S. have graduated from college or obtained a higher educational degree in 2018.