16 datasets found
  1. EfficientDet Pytorch

    • kaggle.com
    zip
    Updated Apr 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathurin AchΓ© (2020). EfficientDet Pytorch [Dataset]. https://www.kaggle.com/mathurinache/efficientdet
    Explore at:
    zip(683867967 bytes)Available download formats
    Dataset updated
    Apr 15, 2020
    Authors
    Mathurin AchΓ©
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    EfficientDet (PyTorch) This is a work in progress PyTorch implementation of EfficientDet.

    It is based on the

    official Tensorflow implementation by Mingxing Tan and the Google Brain team paper by Mingxing Tan, Ruoming Pang, Quoc V. Le EfficientDet: Scalable and Efficient Object Detection I am aware there are other PyTorch implementations. Their approach didn't fit well with my aim to replicate the Tensorflow models closely enough to allow weight ports while still maintaining a PyTorch feel and a high degree of flexibility for future additions. So, this is built from scratch and leverages my previous EfficientNet work.

    Updates / Tasks 2020-4-15 Taking a pause on training, some high priority things came up. There are signs of life on the training branch, was working the basic augs before priority switch, loss fn appeared to be doing something sane with distributed training working, no proper eval yet, init not correct yet. I will get to it, with SOTA training config and good performance as the end goal (as with my EfficientNet work).

    2020-04-11 Cleanup post-processing. Less code and a five-fold throughput increase on the smaller models. D0 running > 130 img/s on a single 2080Ti, D1 > 130 img/s on dual 2080Ti up to D7 @ 8.5 img/s.

    2020-04-10 Replace generate_detections with PyTorch impl using torchvision batched_nms. Significant performance increase with minor (+/-.001 mAP) score differences. Quite a bit faster than original TF impl on a GPU now.

    2020-04-09 Initial code with working validation posted. Yes, it's a little slow, but I think faster than the official impl on a GPU if you leave AMP enabled. Post processing needs some love.

    Core Tasks Feature extraction from my EfficientNet implementations (https://github.com/rwightman/gen-efficientnet-pytorch or https://github.com/rwightman/pytorch-image-models) Low level blocks / helpers (SeparableConv, create_pool2d (same padding), etc) PyTorch implementation of BiFPN, BoxNet, ClassNet modules and related submodules Port Tensorflow checkpoints to PyTorch -- initial D1 checkpoint converted, state_dict loaded, on to validation.... Basic MS COCO validation script Temporary (hacky) COCO dataset and transform Port reference TF anchor and object detection code Verify model output sanity Integrate MSCOCO eval metric calcs Some cleanup, testing Submit to test-dev server, all good Add torch hub support and pretrained URL based weight download Change module dependencies from 'timm' to minimal 'geffnet' for backbone, bring some of the layers here leaving as timm for now, as the training code will use many timm functions that I leverage to reproduce SOTA EfficientNet training in PyTorch Remove redundant bias layers that exist in the official impl and weights Add visualization support Performance improvements, numpy TF detection code -> optimized PyTorch Verify/fix Torchscript and ONNX export compatibility Possible Future Tasks Training (object detection) reimplementation w/ Rand/AutoAugment, etc Training (semantic segmentation) experiments Integration with Detectron2 / MMDetection codebases Addition and cleanup of EfficientNet based U-Net and DeepLab segmentation models that I've used in past projects Addition and cleanup of OpenImages dataset/training support from a past project Exploration of instance segmentation possibilities... If you are an organization is interested in sponsoring and any of this work, or prioritization of the possible future directions interests you, feel free to contact me (issue, LinkedIn, Twitter, hello at rwightman dot com). I will setup a github sponser if there is any interest.

    Models Variant Download mAP (val2017) mAP (test-dev2017) mAP (Tensorflow official test-dev2017) D0 tf_efficientdet_d0.pth 32.8 TBD 33.8 D1 tf_efficientdet_d1.pth 38.5 TBD 39.6 D2 tf_efficientdet_d2.pth 42.0 42.5 43 D3 tf_efficientdet_d3.pth 45.3 TBD 45.8 D4 tf_efficientdet_d4.pth 48.3 TBD 49.4 D5 tf_efficientdet_d5.pth 49.6 TBD 50.7 D6 tf_efficientdet_d6.pth 50.6 TBD 51.7 D7 tf_efficientdet_d7.pth 50.9 51.2 52.2 Usage Environment Setup Tested in a Python 3.7 or 3.8 conda environment in Linux with:

    PyTorch 1.4 PyTorch Image Models (timm) 0.1.20, pip install timm or local install from (https://github.com/rwightman/pytorch-image-models) Apex AMP master (as of 2020-04) NOTE - There is a conflict/bug with Numpy 1.18+ and pycocotools, force install numpy <= 1.17.5 or the coco eval will fail, the validation script will still save the output JSON and that can be run through eval again later.

    Dataset Setup MSCOCO 2017 validation data:

    wget http://images.cocodataset.org/zips/val2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip unzip val2017.zip unzip annotations_trainval2017.zip MSCOCO 2017 test-dev data:

    wget http://images.cocodataset.org/zips/test2017.zip unzip -q test2017.zip wget http://images.cocodat...

  2. timm-efficientdet-pytorch

    • kaggle.com
    zip
    Updated Mar 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    moth (2023). timm-efficientdet-pytorch [Dataset]. https://www.kaggle.com/datasets/alejopaullier/timm-efficientdet-pytorch
    Explore at:
    zip(128446 bytes)Available download formats
    Dataset updated
    Mar 29, 2023
    Authors
    moth
    Description

    EfficientDet module [2023-03-30]. Fork of the main branch

    GitHub repo here.

    Learn how to train and infer with EfficientDet: - Benetech EfficientDet Train - Benetech EfficientDet Inference

  3. EfficientDet.Pytorch

    • kaggle.com
    zip
    Updated May 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Shonenkov (2020). EfficientDet.Pytorch [Dataset]. https://www.kaggle.com/shonenkov/efficientdetpytorch
    Explore at:
    zip(10713452 bytes)Available download formats
    Dataset updated
    May 7, 2020
    Authors
    Alex Shonenkov
    Description

    Dataset

    This dataset was created by Alex Shonenkov

    Contents

  4. efficientdet-pytorch

    • kaggle.com
    zip
    Updated Jul 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Varun Dutt (2021). efficientdet-pytorch [Dataset]. https://www.kaggle.com/varundutt9213/efficientdetpytorch
    Explore at:
    zip(135756 bytes)Available download formats
    Dataset updated
    Jul 12, 2021
    Authors
    Varun Dutt
    Description

    Dataset

    This dataset was created by Varun Dutt

    Contents

  5. EffDet 0.2.3 Latest + VinBigData WBF Fused

    • kaggle.com
    zip
    Updated Jan 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sreevishnu Damodaran (2021). EffDet 0.2.3 Latest + VinBigData WBF Fused [Dataset]. https://www.kaggle.com/datasets/sreevishnudamodaran/effdet-latestvinbigdata-wbf-fused/suggestions
    Explore at:
    zip(1699328 bytes)Available download formats
    Dataset updated
    Jan 24, 2021
    Authors
    Sreevishnu Damodaran
    Description

    This Dataset contains following packages for the offline installations of Object Detection models using EfficientDet

    • effdet 0.2.3 Latest (7th Dec 2020)
    • omegaconf-2.0.6
    • timm-0.3.4
    • ensemble_boxes-1.0.4
    • pycocotools-2.0.2

    Additionally it has the VinBigData Chest Abnormalities competition annotations which have been combined using Weighted Boxes Fusion.

    References:

    Thanks to @rwightman for the awesome EfficientDet implementation. Do check it out https://github.com/rwightman/efficientdet-pytorch

    By accessing this dataset, you agree to abide by the license terms of the VinBigData Chest Abnormalities competition and the respective licenses of all the packages in this dataset.

  6. rwightman efficientdet pytorch

    • kaggle.com
    zip
    Updated Jul 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    bendang (2020). rwightman efficientdet pytorch [Dataset]. https://www.kaggle.com/bendang/rwightman-efficientdet-pytorch
    Explore at:
    zip(72843 bytes)Available download formats
    Dataset updated
    Jul 30, 2020
    Authors
    bendang
    Description
  7. YA-EfficientDet-Pytorch

    • kaggle.com
    zip
    Updated Jul 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jony Karki (2020). YA-EfficientDet-Pytorch [Dataset]. https://www.kaggle.com/datasets/jonykarki/yaefficientdetpytorch
    Explore at:
    zip(9114675 bytes)Available download formats
    Dataset updated
    Jul 26, 2020
    Authors
    Jony Karki
    Description

    Dataset

    This dataset was created by Jony Karki

    Contents

  8. Yet-Another-EfficientDet-Pytorch

    • kaggle.com
    zip
    Updated May 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Shonenkov (2020). Yet-Another-EfficientDet-Pytorch [Dataset]. https://www.kaggle.com/datasets/shonenkov/yetanotherefficientdetpytorch/code
    Explore at:
    zip(6671141 bytes)Available download formats
    Dataset updated
    May 9, 2020
    Authors
    Alex Shonenkov
    Description

    Dataset

    This dataset was created by Alex Shonenkov

    Contents

  9. Yet-Another-EfficientDet-Pytorch

    • kaggle.com
    zip
    Updated Oct 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hirune924 (2021). Yet-Another-EfficientDet-Pytorch [Dataset]. https://www.kaggle.com/datasets/hirune924/yetanotherefficientdetpytorch/discussion
    Explore at:
    zip(6925394 bytes)Available download formats
    Dataset updated
    Oct 25, 2021
    Authors
    hirune924
    Description

    Dataset

    This dataset was created by hirune924

    Contents

  10. Efficientdet

    • kaggle.com
    zip
    Updated Jul 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CuiRenjie (2020). Efficientdet [Dataset]. https://www.kaggle.com/cuirenjie/efficientdet
    Explore at:
    zip(15527 bytes)Available download formats
    Dataset updated
    Jul 25, 2020
    Authors
    CuiRenjie
    Description

    Acknowledgements

    copy from zylo 117's EfficientDet-Pytorch

  11. tak_efficientdet

    • kaggle.com
    zip
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tak (2020). tak_efficientdet [Dataset]. https://www.kaggle.com/takaishikawa/tak-efficientdet
    Explore at:
    zip(685036670 bytes)Available download formats
    Dataset updated
    Jun 14, 2020
    Authors
    Tak
    Description
  12. efficientdet_pytorch_master

    • kaggle.com
    zip
    Updated Oct 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ligia (2021). efficientdet_pytorch_master [Dataset]. https://www.kaggle.com/datasets/ligiaa/efficientdet-pytorch-master
    Explore at:
    zip(136010 bytes)Available download formats
    Dataset updated
    Oct 15, 2021
    Authors
    Ligia
    Description

    Dataset

    This dataset was created by Ligia

    Contents

  13. timm_efficientdet_pytorch_fixdiv

    • kaggle.com
    zip
    Updated Oct 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ivan Kalinchuk (2020). timm_efficientdet_pytorch_fixdiv [Dataset]. https://www.kaggle.com/ivankalinchuk/timm-efficientdet-pytorch-fixdiv
    Explore at:
    zip(60219 bytes)Available download formats
    Dataset updated
    Oct 26, 2020
    Authors
    Ivan Kalinchuk
    Description

    Dataset

    This dataset was created by Ivan Kalinchuk

    Contents

  14. efficientdet_new_pytorch

    • kaggle.com
    zip
    Updated Aug 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcin Czelej (2020). efficientdet_new_pytorch [Dataset]. https://www.kaggle.com/marcinczelej/efficientdet-new-pytorch
    Explore at:
    zip(71710 bytes)Available download formats
    Dataset updated
    Aug 1, 2020
    Authors
    Marcin Czelej
    Description

    Dataset

    This dataset was created by Marcin Czelej

    Contents

  15. kaggle_monk_pytorch_efficientdet

    • kaggle.com
    zip
    Updated Jul 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AbhishekAnnamraju (2020). kaggle_monk_pytorch_efficientdet [Dataset]. https://www.kaggle.com/datasets/abhishek4273/kaggle-monk-pytorch-efficientdet
    Explore at:
    zip(92044384 bytes)Available download formats
    Dataset updated
    Jul 13, 2020
    Authors
    AbhishekAnnamraju
    Description

    Dataset

    This dataset was created by AbhishekAnnamraju

    Contents

  16. Object Detection for Autonomous Cars Egypt

    • kaggle.com
    zip
    Updated Nov 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohamed_Ragab (2025). Object Detection for Autonomous Cars Egypt [Dataset]. https://www.kaggle.com/mohamedra9ab/object-detection-for-autonomous-cars-egypt
    Explore at:
    zip(8397343369 bytes)Available download formats
    Dataset updated
    Nov 8, 2025
    Authors
    Mohamed_Ragab
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Egypt
    Description

    πŸš— Enhanced BDD100K Clean Dataset

    πŸ“„ Overview

    This dataset is a refined and enhanced version of the BDD100K dataset, focused on improving the quality and consistency of data for object detection tasks β€” especially in traffic-related scenes.

    It has been carefully cleaned, filtered, and augmented to ensure better model generalization, with an emphasis on improving the representation of smaller traffic objects and removing noisy or invalid samples.

    🧹 Improvements Made

    • πŸ”Ή High-quality image additions: Added higher-resolution images to strengthen underrepresented classes.
    • πŸ”Ή Focused classes: Emphasis on:
      • train
      • bike
      • motor
      • rider
      • traffic sign
      • traffic light
      • tuktuk
      • banners
    • πŸ”Ή Cleaned data:
      • Dropped all bounding boxes smaller than 10% of the average object size per class.
      • Removed duplicate images.
      • Excluded samples with missing images or missing labels.
      • Standardized label formatting and annotation consistency.

    πŸ“¦ Dataset Structure

    β”œβ”€β”€ train/ β”‚ β”œβ”€β”€ images/ β”‚ └── labels/ β”œβ”€β”€ val/ β”‚ β”œβ”€β”€ images/ β”‚ └── labels/ └── test/ β”œβ”€β”€ images/ └── labels/

    Each annotation file corresponds to an image and contains bounding boxes and class labels following standard object detection formats (e.g., YOLO, COCO, or Pascal VOC depending on your export setup).

    🧠 Applications

    • Object detection (YOLOv8, YOLO11, Faster R-CNN, EfficientDet, etc.)
    • Traffic and road-scene understanding
    • Model robustness and domain adaptation research

    βš™οΈ Recommended Usage

    1. Train/Test Split: Use your preferred split (default 80/10/10).
    2. Preprocessing: Normalize image sizes and verify label compatibility.
    3. Frameworks: Compatible with most deep learning frameworks (TensorFlow, PyTorch, etc.).

    πŸ“Š Classes Included

    Class NameDescription
    trainRail vehicles in urban scenes
    bikeBicycles, riders excluded
    motorMotorcycles or scooters
    riderHumans riding bikes or motorcycles
    traffic signRoad and direction signs
    traffic lightRed/yellow/green signal lights
    tuktuk
    banners
    train
    person
    cars
    bus
    trucks

    notes : the data is already augmmented

    augmentation applied : Rotation Hue Contrast Noise

    πŸ“œ License

    This dataset is released under the CC BY 4.0 License β€” you are free to use it with attribution.

    ✍️ Author Notes

    This enhanced version of BDD100K aims to offer a cleaner, more balanced, and higher-quality dataset to improve performance for real-world traffic detection models.

    For any issues or suggestions, feel free to open a discussion on Kaggle.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Mathurin AchΓ© (2020). EfficientDet Pytorch [Dataset]. https://www.kaggle.com/mathurinache/efficientdet
Organization logo

EfficientDet Pytorch

A PyTorch impl of EfficientDet faithful to the original Google

Explore at:
61 scholarly articles cite this dataset (View in Google Scholar)
zip(683867967 bytes)Available download formats
Dataset updated
Apr 15, 2020
Authors
Mathurin AchΓ©
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

EfficientDet (PyTorch) This is a work in progress PyTorch implementation of EfficientDet.

It is based on the

official Tensorflow implementation by Mingxing Tan and the Google Brain team paper by Mingxing Tan, Ruoming Pang, Quoc V. Le EfficientDet: Scalable and Efficient Object Detection I am aware there are other PyTorch implementations. Their approach didn't fit well with my aim to replicate the Tensorflow models closely enough to allow weight ports while still maintaining a PyTorch feel and a high degree of flexibility for future additions. So, this is built from scratch and leverages my previous EfficientNet work.

Updates / Tasks 2020-4-15 Taking a pause on training, some high priority things came up. There are signs of life on the training branch, was working the basic augs before priority switch, loss fn appeared to be doing something sane with distributed training working, no proper eval yet, init not correct yet. I will get to it, with SOTA training config and good performance as the end goal (as with my EfficientNet work).

2020-04-11 Cleanup post-processing. Less code and a five-fold throughput increase on the smaller models. D0 running > 130 img/s on a single 2080Ti, D1 > 130 img/s on dual 2080Ti up to D7 @ 8.5 img/s.

2020-04-10 Replace generate_detections with PyTorch impl using torchvision batched_nms. Significant performance increase with minor (+/-.001 mAP) score differences. Quite a bit faster than original TF impl on a GPU now.

2020-04-09 Initial code with working validation posted. Yes, it's a little slow, but I think faster than the official impl on a GPU if you leave AMP enabled. Post processing needs some love.

Core Tasks Feature extraction from my EfficientNet implementations (https://github.com/rwightman/gen-efficientnet-pytorch or https://github.com/rwightman/pytorch-image-models) Low level blocks / helpers (SeparableConv, create_pool2d (same padding), etc) PyTorch implementation of BiFPN, BoxNet, ClassNet modules and related submodules Port Tensorflow checkpoints to PyTorch -- initial D1 checkpoint converted, state_dict loaded, on to validation.... Basic MS COCO validation script Temporary (hacky) COCO dataset and transform Port reference TF anchor and object detection code Verify model output sanity Integrate MSCOCO eval metric calcs Some cleanup, testing Submit to test-dev server, all good Add torch hub support and pretrained URL based weight download Change module dependencies from 'timm' to minimal 'geffnet' for backbone, bring some of the layers here leaving as timm for now, as the training code will use many timm functions that I leverage to reproduce SOTA EfficientNet training in PyTorch Remove redundant bias layers that exist in the official impl and weights Add visualization support Performance improvements, numpy TF detection code -> optimized PyTorch Verify/fix Torchscript and ONNX export compatibility Possible Future Tasks Training (object detection) reimplementation w/ Rand/AutoAugment, etc Training (semantic segmentation) experiments Integration with Detectron2 / MMDetection codebases Addition and cleanup of EfficientNet based U-Net and DeepLab segmentation models that I've used in past projects Addition and cleanup of OpenImages dataset/training support from a past project Exploration of instance segmentation possibilities... If you are an organization is interested in sponsoring and any of this work, or prioritization of the possible future directions interests you, feel free to contact me (issue, LinkedIn, Twitter, hello at rwightman dot com). I will setup a github sponser if there is any interest.

Models Variant Download mAP (val2017) mAP (test-dev2017) mAP (Tensorflow official test-dev2017) D0 tf_efficientdet_d0.pth 32.8 TBD 33.8 D1 tf_efficientdet_d1.pth 38.5 TBD 39.6 D2 tf_efficientdet_d2.pth 42.0 42.5 43 D3 tf_efficientdet_d3.pth 45.3 TBD 45.8 D4 tf_efficientdet_d4.pth 48.3 TBD 49.4 D5 tf_efficientdet_d5.pth 49.6 TBD 50.7 D6 tf_efficientdet_d6.pth 50.6 TBD 51.7 D7 tf_efficientdet_d7.pth 50.9 51.2 52.2 Usage Environment Setup Tested in a Python 3.7 or 3.8 conda environment in Linux with:

PyTorch 1.4 PyTorch Image Models (timm) 0.1.20, pip install timm or local install from (https://github.com/rwightman/pytorch-image-models) Apex AMP master (as of 2020-04) NOTE - There is a conflict/bug with Numpy 1.18+ and pycocotools, force install numpy <= 1.17.5 or the coco eval will fail, the validation script will still save the output JSON and that can be run through eval again later.

Dataset Setup MSCOCO 2017 validation data:

wget http://images.cocodataset.org/zips/val2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip unzip val2017.zip unzip annotations_trainval2017.zip MSCOCO 2017 test-dev data:

wget http://images.cocodataset.org/zips/test2017.zip unzip -q test2017.zip wget http://images.cocodat...

Search
Clear search
Close search
Google apps
Main menu